Objective: Pulmonary thrombosis is observed in severe acute respiratory syndrome coronavirus 2 pneumonia. Aim was to investigate whether subpopulations of platelets were programmed to procoagulant and inflammatory activities in coronavirus disease 2019 (COVID-19) patients with pneumonia, without comorbidities predisposing to thromboembolism. Approach and Results: Overall, 37 patients and 28 healthy subjects were studied. Platelet-leukocyte aggregates, platelet-derived microvesicles, the expression of P-selectin, and active fibrinogen receptor on platelets were quantified by flow cytometry. The profile of 45 cytokines, chemokines, and growth factors released by platelets was defined by immunoassay. The contribution of platelets to coagulation factor activity was selectively measured. Numerous platelet-monocyte (mean±SE, 67.9±4.9%, n=17 versus 19.4±3.0%, n=22; P <0.0001) and platelet-granulocyte conjugates (34.2±4.04% versus 8.6±0.7%; P <0.0001) were detected in patients. Resting patient platelets had similar levels of P-selectin (10.9±2.6%, n=12) to collagen-activated control platelets (8.7±1.5%), which was not further increased by collagen activation on patient platelets (12.4±2.5%, P =nonsignificant). The agonist-stimulated expression of the active fibrinogen receptor was reduced by 60% in patients ( P <0.0001 versus controls). Cytokines (IL [interleukin]-1α, IL-1β, IL-1RA, IL-4, IL-10, IL-13, IL, 17, IL-27, IFN [interferon]-α, and IFN-γ), chemokines (MCP-1/CCL2), and growth factors (VEGF [vascular endothelial growth factor]-A/D) were released in significantly larger amounts upon stimulation of COVID-19 platelets. Platelets contributed to increased fibrinogen, VWF (von Willebrand factor), and factor XII in COVID-19 patients. Patients (28.5±0.7 s, n=32), unlike controls (31.6±0.5 s, n=28; P <0.001), showed accelerated factor XII–dependent coagulation. Conclusions: Platelets in COVID-19 pneumonia are primed to spread proinflammatory and procoagulant activities in systemic circulation.
Background: This study monitored total anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) RBD (receptor-binding domain) antibodies levels in a large population of healthcare workers undergoing mRNA COVID-19 vaccination. Methods. The study population consisted of employees of Pederzoli Hospital of Peschiera del Garda (Verona, Italy), who underwent voluntary vaccination with two doses of COVID-19 mRNA BNT162b2 (Comirnaty; Pfizer Inc). Venous blood was drawn immediately before the first vaccine dose, as well as 21 days (immediately before second vaccine dose) and 50 days afterwards. Humoral response was assessed with Roche Elecsys Anti-SARS-CoV-2 S total antibodies, on Roche Cobas 6000 (Roche Diagnostics). Results: The final study population consisted of 925 subjects (mean age, 44 ± 13 years; 457 women), 206 (22.3%) anti-SARS-CoV-2 baseline seropositive. The increase of total anti-SARS-CoV-2 RBD antibodies levels 21 days after the first vaccine dose was ~3 orders of magnitude higher in seropositive than in seronegative individuals (11782 vs. 42 U/mL; p < 0.001). Total anti-SARS-CoV-2 RBD antibodies levels further increased by over 30-fold after the second vaccine dose in baseline seronegative subjects, while such increase was only ~1.3-fold in baseline seropositive subjects. In multivariate analysis, total anti-SARS-CoV-2 RBD antibodies level was inversely associated with age after both vaccine doses and male sex after the second vaccine dose in baseline seronegative subjects, while baseline antibodies value significantly predicted immune response after both vaccine doses in baseline seropositive recipients. Conclusion: Significant difference exists in post-mRNA COVID-19 vaccine immune response in baseline seronegative and seropositive subjects, which seems dependent on age and sex in seronegative subjects, as well as on baseline anti-SARS-CoV-2 antibodies level in seropositive patients.
Objectives Since universal vaccination is a pillar against coronavirus disease 2019 (COVID-19), monitoring anti-SARS-CoV-2 neutralizing antibodies is essential for deciphering post-vaccination immune response. Methods Three healthcare workers received 30 μg BNT162b2 mRNA Covid-19 Pfizer Vaccine, followed by a second identical dose, 21 days afterwards. Venous blood was drawn at baseline and at serial intervals, up to 63 days afterwards, for assessing total immunoglobulins (Ig) anti-RBD (receptor binding domain), anti-S1/S2 and anti-RBD IgG, anti-RBD and anti-N/S1 IgM, and anti-S1 IgA. Results All subjects were SARS-CoV-2 seronegative at baseline. Total Ig anti-RBD, anti-S1/S2 and anti-RBD IgG levels increased between 91 and 368 folds until 21 days after the first vaccine dose, then reached a plateau. The levels raised further after the second dose (by ∼30-, ∼8- and ∼8-fold, respectively), peaking at day 35, but then slightly declining and stabilizing ∼50 days after the first vaccine dose. Anti-S1 IgA levels increased between 7 and 11 days after the first dose, slightly declined before the second dose, after which levels augmented by ∼24-fold from baseline. The anti-RBD and anti-N/S1 IgM kinetics were similar to that of anti-S1 IgA, though displaying substantially weaker increases and modest peaks, only 4- to 7-fold higher than baseline. Highly significant inter-correlation was noted between total Ig anti-RBD, anti-S1/S2 and anti-RBD IgG (all r=0.99), whilst other anti-SARS-CoV-2 antibodies displayed lower, though still significant, correlations. Serum spike protein concentration was undetectable at all-time points. Conclusions BNT162b2 mRNA vaccination generates a robust humoral immune response, especially involving anti-SARS-Cov-2 IgG and IgA, magnified by the second vaccine dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.