A hallmark of B-cell immunity is the generation of a diverse repertoire of antibodies from a limited set of germline V(D)J genes. This repertoire is usually defined in terms of amino acid composition. However, variable domains may also acquire -linked glycans, a process conditional on the introduction of consensus amino acid motifs (-glycosylation sites) during somatic hypermutation. High levels of variable domain glycans have been associated with autoantibodies in rheumatoid arthritis, as well as certain follicular lymphomas. However, the role of these glycans in the humoral immune response remains poorly understood. Interestingly, studies have reported both positive and negative effects on antibody affinity. Our aim was to elucidate the role of variable domain glycans during antigen-specific antibody responses. By analyzing B-cell repertoires by next-generation sequencing, we demonstrate that -glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we subsequently show that this process is subject to selection during antigen-specific antibody responses, skewed toward IgG4, and positively contributes to antigen binding. Together, these results highlight a physiological role for variable domain glycosylation as an additional layer of antibody diversification that modulates antigen binding.
The humoral immune response against adalimumab is highly restricted and limited to the idiotype of the therapeutic antibody. All antibodies result in functional neutralisation of the drug, thereby providing a mechanism by which AAA formation leads to clinical non-response.
BackgroundIn a subset of patients, anti tumour necrosis factor (TNF) therapeutic antibodies are immunogenic, resulting in the formation of antidrug antibodies (ADAs). Neutralising ADAs compete with TNF for its binding site and reduces the effective serum concentration, causing clinical non-response. It is however unknown to which extent ADAs are neutralising.ObjectivesTo study which proportion of antibodies to human(ised) anti-TNF (adalimumab, golimumab, certolizumab) as well as chimeric anti-TNF (infliximab) is neutralising.MethodsNeutralising capacity of ADAs was assessed using a TNF competition assay in ADA-positive sera of patients treated with adalimumab (n=21), golimumab (n=4), certolizumab (n=9) or infliximab (n=34) sent in to our diagnostic department.ResultsIn 34 sera with ADAs to adalimumab, golimumab or certolizumab, >97% of the antibodies were neutralising. In 34 sera with ADAs to infliximab >90% of the antibodies were neutralising. Further characterisation of the broader antibody response to infliximab revealed that non-neutralising antibodies to infliximab do not target murine domains, but may bind infliximab-unique domains not involved in TNF binding (located outside the paratope).ConclusionsOur study shows that ADAs to human(ised) as well as chimeric anti-TNF therapeutic antibodies are largely neutralising. This highly restricted ADA response suggests an immunodominant role for the paratope of anti-TNF therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.