The frequency of mutations in most breast cancer panel genes among individuals selected for possible hereditary breast cancer is low and, in many cases, similar or even lower than that observed among cancer-free population controls. Although multigene panels can significantly aid in cancer risk management and expedite clinical translation of new genes, they equally have the potential to provide clinical misinformation and harm at the individual level if the data are not interpreted cautiously.
BackgroundSmall promoters that recapitulate endogenous gene expression patterns are important for basic, preclinical, and now clinical research. Recently, there has been a promising revival of gene therapy for diseases with unmet therapeutic needs. To date, most gene therapies have used viral-based ubiquitous promoters–however, promoters that restrict expression to target cells will minimize off-target side effects, broaden the palette of deliverable therapeutics, and thereby improve safety and efficacy. Here, we take steps towards filling the need for such promoters by developing a high-throughput pipeline that goes from genome-based bioinformatic design to rapid testing in vivo.MethodsFor much of this work, therapeutically interesting Pleiades MiniPromoters (MiniPs; ~4 kb human DNA regulatory elements), previously tested in knock-in mice, were “cut down” to ~2.5 kb and tested in recombinant adeno-associated virus (rAAV), the virus of choice for gene therapy of the central nervous system. To evaluate our methods, we generated 29 experimental rAAV2/9 viruses carrying 19 different MiniPs, which were injected intravenously into neonatal mice to allow broad unbiased distribution, and characterized in neural tissues by X-gal immunohistochemistry for icre, or immunofluorescent detection of GFP.ResultsThe data showed that 16 of the 19 (84 %) MiniPs recapitulated the expression pattern of their design source. This included expression of: Ple67 in brain raphe nuclei; Ple155 in Purkinje cells of the cerebellum, and retinal bipolar ON cells; Ple261 in endothelial cells of brain blood vessels; and Ple264 in retinal Müller glia.ConclusionsOverall, the methodology and MiniPs presented here represent important advances for basic and preclinical research, and may enable a paradigm shift in gene therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s13041-016-0232-4) contains supplementary material, which is available to authorized users.
PALB2 is established as the most clinically important moderate to high penetrance breast cancer predisposition gene after BRCA1 and BRCA2. Mutations in classical familial cancer predisposition genes are presumed to be recessive at the cellular level and therefore a second inactivating somatic mutation is required in the tumour tissue. However, from the limited data that exist, PALB2 may be an example of a cancer predisposition gene that does not conform to Knudson's 'two hit' paradigm. We conducted genome-wide copy number analysis and targeted sequencing of PALB2 and other breast cancer driver genes in 15 invasive breast cancers from individuals carrying pathogenic germline mutations in PALB2. The majority of cancers showed clear evidence of bi-allelic inactivation of PALB2 (10/15) either as loss of heterozygosity involving the wild-type allele (six tumours) or as somatic point mutations (four tumours). All PALB2-null cancers had high homologous recombination deficiency (HRD) scores consistent with a homologous recombination repair deficiency. Interestingly, all but one of the PALB2 heterozygous cancers also had high HRD scores, suggesting that alternative mechanisms of PALB2 functional loss might be operating in these cancers. Our findings demonstrate that PALB2 does undergo bi-allelic inactivation in the majority of breast cancers from PALB2 germline mutation carriers. This feature has implications for the discovery of new moderate to high penetrance breast cancer predisposition genes as it supports using the existence of a 'second hit' and mutation signatures as important search criteria. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.