Blockade of immune checkpoints is emerging as new form of anticancer therapy. We studied the expression of PD-L1, PD-L2, PD-1 and CTLA4 mRNA expression in CD34+ cells from MDS, CMML and AML patients (N=124). Aberrant up-regulation (≥2 fold) was observed in 34%, 14%, 15% and 8% of the patients respectively. Increased expression of these 4 genes was also observed in PBMNC (N=61). The relative expression of PD-L1 from PBMNC was significantly higher in MDS (p=0.018) and CMML (p=0.0128) compared to AML. By immunohistochemical (IHC) analysis, PD-L1 protein expression was observed in MDS CD34+ cells, whereas stroma/non-blast cellular compartment was positive for PD-1. In a cohort of patients treated with epigenetic therapy, PD-L1, PD-L2, PD-1 and CTLA4 expression was upregulated. Patients resistant to therapy had relative higher increments in gene expression compared to patients that achieved response. Treatment of leukemia cells with decitabine resulted in a dose dependent up-regulation of above genes. Exposure to decitabine resulted in partial demethylation of PD-1 in leukemia cell lines and human samples. This study suggests PD-1 signaling may be involved in MDS pathogenesis and resistance mechanisms to HMAs. Blockade of this pathway can be a potential therapy in MDS and AML.
BACKGROUND Poor engraftment due to low cell doses restricts the usefulness of umbilical-cord-blood transplantation. We hypothesized that engraftment would be improved by transplanting cord blood that was expanded ex vivo with mesenchymal stromal cells. METHODS We studied engraftment results in 31 adults with hematologic cancers who received transplants of 2 cord-blood units, 1 of which contained cord blood that was expanded ex vivo in cocultures with allogeneic mesenchymal stromal cells. The results in these patients were compared with those in 80 historical controls who received 2 units of unmanipulated cord blood. RESULTS Coculture with mesenchymal stromal cells led to an expansion of total nucleated cells by a median factor of 12.2 and of CD34+ cells by a median factor of 30.1. With transplantation of 1 unit each of expanded and unmanipulated cord blood, patients received a median of 8.34×107 total nucleated cells per kilogram of body weight and 1.81×106 CD34+ cells per kilogram — doses higher than in our previous transplantations of 2 units of unmanipulated cord blood. In patients in whom engraftment occurred, the median time to neutrophil engraftment was 15 days in the recipients of expanded cord blood, as compared with 24 days in controls who received unmanipulated cord blood only (P<0.001); the median time to platelet engraftment was 42 days and 49 days, respectively (P = 0.03). On day 26, the cumulative incidence of neutrophil engraftment was 88% with expansion versus 53% without expansion (P<0.001); on day 60, the cumulative incidence of platelet engraftment was 71% and 31%, respectively (P<0.001). CONCLUSIONS Transplantation of cord-blood cells expanded with mesenchymal stromal cells appeared to be safe and effective. Expanded cord blood in combination with unmanipulated cord blood significantly improved engraftment, as compared with unmanipulated cord blood only. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT00498316.)
Key Points• Human IgM memory B cells possess immunoregulatory properties analogous to transitional B cells.• IL-10-producing B cells are deficient in cGVHD.A subset of regulatory B cells (Bregs) in mice negatively regulate T-cell immune responses through the secretion of regulatory cytokines such as IL-10 and direct cell-cell contact and have been linked to experimental models of autoimmunity, inflammation, and cancer. However, the regulatory function of Bregs in human disease is much less clear.Here we demonstrate that B cells with immunoregulatory properties are enriched within both the CD19 1 IgM 1 CD27 1 memory and CD19 1 CD24 hi CD38 hi transitional B-cell subsets in healthy human donors. Both subsets suppressed the proliferation and interferon-g production of CD3/CD28-stimulated autologous CD4 1 T cells in a dose-dependent manner, and both relied on IL-10 secretion as well as cell-cell contact, likely mediated through CD80 and CD86, to support their full suppressive function. Moreover, after allogeneic stem cell transplantation, Bregs from patients with chronic graft-versus-host disease (cGVHD) were less frequent and less likely to produce IL-10 than were Bregs from healthy donors and patients without cGVHD. These findings suggest that Bregs may be involved in the pathogenesis of cGVHD and support future investigation of regulatory B cell-based therapy in the treatment of this disease. (Blood. 2014;124(13):2034-2045
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.