Organic/inorganic hybrid lead halide perovskites are promising optoelectronic materials due to their unique structure, excellent properties, and fascinating potential applications in lighting, photovoltaic, etc. However, perovskite materials are very sensitive to moisture and polar solvent, which greatly hinders their practical applications. Here, highly luminescent perovskite-polystyrene composite beads with uniform morphology are prepared via a simple swelling-shrinking strategy. This process is carried out only in nonpolar toluene and hexane without the addition of any polar reagents. As a result, the as-prepared composite beads not only retain high luminescence but also exhibit superior water-resistant property. The composites emit strong luminescence after being immersed into water over nine months. Moreover, even in some harsh environments such as acid/alkali aqueous solution, phosphate buffer solution, and Dulbecco's modified eagle medium biological buffers, they still preserve high luminescence. The applications in light-emitting diodes and cellular labeling agents are also carried out to demonstrate their ultrastability.
Phosphor-converted white-light-emitting diodes (pc-WLED) have been extensively employed as solid-state lighting sources, which have a very important role in people’s daily lives. However, due to the scarcity of the red component, it is difficult to realize warm white light efficiently. Hence, red-emitting phosphors are urgently required for improving the illumination quality. In this work, we develop a novel orangish-red La4GeO8:Bi3+ phosphor, the emission peak of which is located at 600 nm under near-ultraviolet (n-UV) light excitation. The full width at half maximum (fwhm) is 103 nm, the internal quantum efficiency (IQE) exceeds 88%, and the external quantum efficiency (EQE) is 69%. According to Rietveld refinement analysis and density functional theory (DFT) calculations, Bi3+ ions randomly occupy all La sites in orthorhombic La4GeO8. Importantly, the oxygen-vacancy-induced electronic localization around the Bi3+ ions is the main reason for the highly efficient orangish-red luminescence. These results provide a new perspective and insight from the local electron structure for designing inorganic phosphor materials that realize the unique luminescence performance of Bi3+ ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.