Adoption of all components of a structured surgical implant technique and clinical management strategy (PREVENT recommendations) is associated with low rates of confirmed PT.
Isolated diastolic dysfunction is found in almost half of asymptomatic patients with well-controlled diabetes and may precede diastolic heart failure. However, mechanisms that underlie diastolic dysfunction during diabetes are not well understood. We tested the hypothesis that isolated diastolic dysfunction is associated with impaired myocardial Ca(2+) handling during type 1 diabetes. Streptozotocin-induced diabetic rats were compared with age-matched placebo-treated rats. Global left ventricular myocardial performance and systolic function were preserved in diabetic animals. Diabetes-induced diastolic dysfunction was evident on Doppler flow imaging, based on the altered patterns of mitral inflow and pulmonary venous flows. In isolated ventricular myocytes, diabetes resulted in significant prolongation of action potential duration compared with controls, with afterdepolarizations occurring in diabetic myocytes (P < 0.05). Sustained outward K(+) current and peak outward component of the inward rectifier were reduced in diabetic myocytes, while transient outward current was increased. There was no significant change in L-type Ca(2+) current; however, Ca(2+) transient amplitude was reduced and transient decay was prolonged by 38% in diabetic compared with control myocytes (P < 0.05). Sarcoplasmic reticulum Ca(2+) load (estimated by measuring the integral of caffeine-evoked Na(+)-Ca(2+) exchanger current and Ca(2+) transient amplitudes) was reduced by approximately 50% in diabetic myocytes (P < 0.05). In permeabilized myocytes, Ca(2+) spark amplitude and frequency were reduced by 34 and 20%, respectively, in diabetic compared with control myocytes (P < 0.05). Sarco(endo)plasmic reticulum Ca(2+)-ATPase-2a protein levels were decreased during diabetes. These data suggest that in vitro impairment of Ca(2+) reuptake during myocyte relaxation contributes to in vivo diastolic dysfunction, with preserved global systolic function, during diabetes.
Although percutaneous, adenoviral-mediated intracoronary gene delivery to the heart has been demonstrated in some species, consistent and safe methodology is needed before clinical applicability is possible. In this study, we examine the effects of altering intracoronary flow rate and obtaining an adequate seal between the catheter and the coronary lumen on successful cardiac gene delivery and myocardial injury in both piglets and adult rabbits. To study the efficacy of in vivo myocardial gene transfer, we utilized adenoviral vectors containing either the beta(2)-adrenergic receptor or beta-galactosidase. The left circumflex coronary artery of piglets and the right coronary artery of rabbits were catheterized under fluoroscopic guidance and adenovirus solutions were injected using varying flow rates with or without balloon inflation. Successful transgene delivery to the heart was determined approximately 1 week after coronary infusions. Histologic analysis was also performed in all animals to determine the extent of myocardial injury. Our results indicate that efficient and reproducible cardiac transgene expression utilizing intracoronary delivery is dependent upon the infusion flow rate and, in larger animals, requires an intraluminal seal. Excessive flow rate is associated with greater myocardial injury. Thus, conditions can be established and controlled to improve future investigational and clinical application of catheter-based intracoronary myocardial gene therapy.
NP education plus tablet use was not associated with significantly lower 30-day readmission rates in comparison with NP alone, but a positive trend was seen. Patient satisfaction trended higher and heart failure explanations were better with NP education plus tablet. A larger study is needed to determine if NP education plus tablet reduces readmission rates following heart failure admission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.