Midrapidity production of π ± , K ± , and (p)p measured by the ALICE experiment at the CERN Large Hadron Collider, in Pb-Pb and inelastic pp collisions at √ s NN = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum (p T) range from hundreds of MeV/c up to 20 GeV/c. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0-90%. The comparison of the p T-integrated particle ratios, i.e., proton-to-pion (p/π) and kaon-to-pion (K/π) ratios, with similar measurements in Pb-Pb collisions at √ s NN = 2.76 TeV show no significant energy dependence. Blast-wave fits of the p T spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/π , K/π) as a function of p T show pronounced maxima at p T ≈ 3 GeV/c in central Pb-Pb collisions. At high p T , particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at √ s NN = 2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high p T and compatible with measurements at √ s NN = 2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily.
We observe a narrow enhancement near 2m(p) in the invariant mass spectrum of pp pairs from radiative J/psi-->gammapp decays. No similar structure is seen in J/psi-->pi(0)pp decays. The results are based on an analysis of a 58 x 10(6) event sample of J/psi decays accumulated with the BESII detector at the Beijing electron-positron collider. The enhancement can be fit with either an S- or P-wave Breit-Wigner resonance function. In the case of the S-wave fit, the peak mass is below 2m(p) at M=1859(+3)(-10) (stat)+5-25(syst) MeV/c(2) and the total width is Gamma<30 MeV/c(2) at the 90% confidence level. These mass and width values are not consistent with the properties of any known particle.
The first evidence of spin alignment of vector mesons (K Ã0 and ϕ) in heavy-ion collisions at the Large Hadron Collider (LHC) is reported. The spin density matrix element ρ 00 is measured at midrapidity (jyj < 0.5) in Pb-Pb collisions at a center-of-mass energy (ffiffiffiffiffiffiffi ffi s NN p) of 2.76 TeV with the ALICE detector. ρ 00 values are found to be less than 1=3 (1=3 implies no spin alignment) at low transverse momentum (p T < 2 GeV=c) for K Ã0 and ϕ at a level of 3σ and 2σ, respectively. No significant spin alignment is observed for the K 0 S meson (spin ¼ 0) in Pb-Pb collisions and for the vector mesons in pp collisions. The measured spin alignment is unexpectedly large but qualitatively consistent with the expectation from models which attribute it to a polarization of quarks in the presence of angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination.
We present a study of the inclusive chargedparticle transverse momentum (p T) spectra as a function of charged-particle multiplicity density at mid-pseudorapidity, dN ch /dη, in pp collisions at √ s = 5.02 and 13 TeV covering the kinematic range |η| < 0.8 and 0.15 < p T < 20 GeV/c. The results are presented for events with at least one charged particle in |η| < 1 (INEL > 0). The p T spectra are reported for two multiplicity estimators covering different pseudorapidity regions. The p T spectra normalized to that for INEL > 0 show little energy dependence. Moreover, the highp T yields of charged particles increase faster than the charged-particle multiplicity density. The average p T as a function of multiplicity and transverse spherocity is reported for pp collisions at √ s = 13 TeV. For low-(high-) spherocity events, corresponding to jet-like (isotropic) events, the average p T is higher (smaller) than that measured in INEL > 0 pp collisions. Within uncertainties, the functional form of p T (N ch) is not affected by the spherocity selection. While EPOS LHC gives a good description of many features of data, PYTHIA overestimates the average p T in jet-like events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.