published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
The k th power of a graph G = (V, E), G k , is the graph whose vertex set is V and in which two distinct vertices are adjacent if and only if their distance in G is at most k. This article proves various eigenvalue bounds for the independence number and chromatic number of G k which purely depend on the spectrum of G, together with a method to optimize them. Our bounds for the k-independence number also work for its quantum counterpart, which is not known to be a computable parameter in general, thus justifying the use of integer programming to optimize them. Some of the bounds previously known in the literature follow as a corollary of our main results. Infinite families of graphs where the bounds are sharp are presented as well.
For k ≥ 1, the k-independence number α k of a graph is the maximum number of vertices that are mutually at distance greater than k. The well-known inertia and ratio bounds for the (1-)independence number α(= α 1 ) of a graph, due to Cvetković and Hoffman, respectively, were generalized recently for every value of k. We show that, for graphs with enough regularity, the polynomials involved in such generalizations are closely related and give exact values for α k , showing a new relationship between the inertia and ratio type bounds. Additionally, we investigate the existence and properties of the extremal case of sets of vertices that are mutually at maximum distance for walk-regular graphs. Finally, we obtain new sharp inertia and ratio type bounds for partially walk-regular graphs by using the predistance polynomials.
A Neumaier graph is a non-complete edge-regular graph containing a regular clique. A Neumaier graph that is not strongly regular is called a strictly Neumaier graph. In this work we present a new construction of strictly Neumaier graphs, and using Jacobi sums, we show that our construction produces infinitely many instances. Moreover, we prove some necessary conditions for the existence of (strictly) Neumaier graphs that allow us to show that several parameter sets are not admissible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.