Ependymal tumors across age groups are currently classified and graded
solely by histopathology. It is, however, commonly accepted that this
classification scheme has limited clinical utility based on its lack of
reproducibility in predicting patients’ outcome. We aimed at establishing
a uniform molecular classification using DNA methylation profiling. Nine
molecular subgroups were identified in a large cohort of 500 tumors, 3 in each
anatomical compartment of the CNS, spine, posterior fossa, supratentorial. Two
supratentorial subgroups are characterized by prototypic fusion genes involving
RELA and YAP1, respectively. Regarding clinical associations, the molecular
classification proposed herein outperforms the current histopathological
classification and thus might serve as a basis for the next World Health
Organization classification of CNS tumors.
BackgroundGene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model.ResultsWe generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models.ConclusionsWe demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0694-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.