After reaching confluence, mononucleated L6 myoblasts fuse into multinucleated contracting myotubes. This process is accompanied by the synthesis of characteristic skeletal muscle proteins, such as myosin heavy chain and the MM isoenzyme of creatine kinase. We have studied the development of insulin receptors and insulin responsiveness during differentiation in the L6 cells. Insulin was bound to high affinity receptors in both myoblasts and differentiated myotubes. The binding showed characteristics typical for insulin binding in other cell types, including high affinity, appropriate specificity, an upwardly concave Scatchard plot, and down-regulation. In the logarithmic growth phase, the myoblasts exhibited a low level of insulin binding, but on initiation of cell fusion, the resulting myotubes progressively developed a 2-fold increase in specific [125I]iodoinsulin binding as a result of a 2-fold increase in receptor number. The increase in insulin binding was an early differentiation event, preceding the accumulation of creatine kinase by 24 h. The development of insulin binding during differentiation correlated closely with an increased ability of the hormone to stimulate maximal 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake at physiological concentrations. The L6 cells are a useful model for studying the binding and effects of physiological insulin concentrations in skeletal muscle before and after differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.