Chronic oxidative stress plays an important role in depression. The aim of present study was to examine the stress-induced changes in serum corticosterone (CORT) levels, cytosolic protein carbonyl groups, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO) and total superoxide dismutase (SOD) activity in the prefrontal cortex versus hippocampus of male Wistar rats exposed to acute (2 h of immobilization or cold), chronic (21d of social isolation) stress, and their combination (chronic + acute stress). The subcellular distribution of nuclear factor-κB (NF-κB) and cytosolic cyclooxygenase 2 (COX-2) protein expressions were also examined. Depressive- and anxiety-like behaviors were assessed via the forced swim, sucrose preference, and marble burying tests in chronically isolated rats. Although both acute stressors resulted in elevated CORT, increased MDA in the prefrontal cortex and NF-κB activation accompanied by increased NO in the hippocampus were detected only following acute cold stress. Chronic isolation resulted in no change in CORT levels, but disabled appropriate response to novel acute stress and led to depressive- and anxiety-like behaviors. Increased oxidative/nitrosative stress markers, likely by NF-κB nuclear translocation and concomitant COX-2 upregulation, associated with decreased SOD activity and GSH levels, suggested the existence of oxidative stress in the prefrontal cortex. In contrast, hippocampus was less susceptible to oxidative damage showing only increase in protein carbonyl groups and depleted GSH. Taken together, the prefrontal cortex seems to be more sensitive to oxidative stress than the hippocampus following chronic isolation stress, which may be relevant for further research related to stress-induced depressive-like behavior.
Oxidative stress is considered to be implicated in the pathophysiology of breast cancers. In this study we investigated the level of oxidative stress and antioxidant (AO) status in the blood of breast cancer patients of different ages. The level of lipid hydroperoxides (LP) was measured in blood plasma and the activities of copper, zinc superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) enzymes, as well as the level of total glutathione (GSH) and CuZnSOD protein were measured in blood cells of breast cancer patients and age-matched healthy subjects. Our results showed that breast carcinoma is related to increase of lipid peroxidation in plasma with concomitant decrease of AO defense capacity in blood cells, which becomes more pronounced during aging of the patients. Suppression of CuZnSOD activity related to breast cancer is most likely caused by decreased de novo synthesis of this enzyme. Similar patterns of suppression in CuZnSOD and CAT activities related to aging were recorded both in controls and patients. Age-related decrease in CuZnSOD activity seems not to be caused by altered protein levels of this enzyme. Suppression of AO enzymes associated with breast cancer and aging is most likely the cause of increased levels of reactive oxygen species (ROS). Our results indicate significant role of oxidative-induced injury in the breast carcinogenesis, particularly during the later stages of aging. Overall, our data support the importance of endogenous AOs in the etiology of breast cancer across all levels of predicted risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.