In this study, a series of elastomeric nanocomposites based on specific amounts of polyamide6 (PA6)/chloroprene rubber (CR) blends which are compatibilized with ethylene propylene diene monomer-grafted-maleic anhydride (EPDM-g-MA) and different amounts of graphene oxide (GO) were prepared with melt mixing method. The effect of compatibilizer and reinforcement concentration in the PA6/CR blend matrix was investigated using theoretical and experimental analysis. Dispersion of nanoplatelets within rubber blend matrix was proven with transmission electron microscopy and field emission-scanning electron microscopy. The modified microstructure of samples showed the significant effect of EPDM-g-MA and GO on the size reduction of CR droplets in the PA6 continuous phase. The results from differential scanning calorimetry and dynamic mechanical thermal analysis revealed the effect of EPDM-g-MA and GO as an effective nucleating agent in PA6-enriched GO/CR (PA6EGO/CR). The findings obtained from thermogravimetric analysis displayed that the GO in the presence of an EPDM-g-MA as a compatibilizer can cause a higher thermal stability in PA6EGO/CR. From mechanical properties, by adding a compatibilizer to the PA6/CR blend, the tensile strength changed from 39.0 to 45.1, the Young's modulus altered from 522.2 to 716.0 and the elongation at break changed from 246.8 to 222.2. While incorporation of 5 phr of GO to the compatibilized blend, the tensile strength increased by 25.2%, the Young's modulus increased by 36.6% and the elongation at break decreased by 20%. The Christensen-Lo model used for analyzing the
In this study, nanocomposites based on polyamide 6/carboxylated acrylonitrile butadiene rubber (PA6/XNBR) reinforced by the clay montmorillonite (OMMT) (Cloisite 20A and Cloisite 30B) were prepared by melt mixing. Glycidyl methacrylate-grafted XNBR (XNBR-g-GMA) compatibilizer was used for immiscible blends of PA6/XNBR. The results illustrated that OMMT wanted to be selectively present in the more hydrophilic PA6 phase. Also, by adding the XNBR-g-GMA compatibilizer and increasing OMMT content, tensile strength, rheological and dynamic mechanical properties of the nanocomposites improved. According to transmission electron microscopy (TEM) images, a few layers of OMMT (Cloisite 20A) in the XNBR-g-GMA compatibilizer phase was observed. The results of X-ray diffractometry and TEM analyses demonstrated that the formation of intercalated or exfoliated structures for both types of OMMT nanocomposites. In end of all analysis was found PA6/XNBR reinforced by the Cloisite 30B could be substantially improved by adding XNBR-g-GMA as a compatibilizer when compared to those reinforced by Cloisite 20A.
Nonlinear elastoplastic behavior of the nanocomposites based on the styreneacrylonitrile/carboxylated acrylonitrile butadiene rubber (SAN/XNBR) blend was investigated using experimental and theoretical analysis. Graphene, graphene oxide nanoparticles, and glycidyl methacrylate-grafted-XNBR (XNBR-g-GMA) as a compatibilizer were incorporated in the SAN/XNBR blends. In this regard, the focus of this study is on modeling of the stress-strain behavior of these nanocomposites, considering the effect of the interfacial interactions made by compatibilizer. For this purpose, field emission scanning electron microscopy (FESEM) and transmission electron microscope (TEM) techniques were used to investigate the relationship between microstructure and mechanical properties of nanocomposites. In addition, FESEM and TEM images showed that the presence of a compatibilizer could influence the dispersion and localization of the nanoparticles. According to the tensile test results, the presence of the compatibilizer increased the mechanical properties of the nanocomposites, specifically elongation at break. Considering the nanocomposite containing compatibilizer and graphene oxide, the elongation at break increased about 570% compared with the nanocomposite without compatibilizer. Better dispersion of graphene oxide and the creation of chemical interaction among components in the presence of the XNBR-g-GMA compatibilizer could be the reasons for these improvements, as confirmed by TEM. The usage of the Bergstrom-Boyce model for analyzing the nonlinear elastoplastic behavior of the nanocomposites illustrated proper conformity with the experimental data in the elastic region. However, there are some deviations in the viscoplastic region, particularly close to the breaking elongation region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.