Significance
A unique avian-origin H7N9 influenza virus caused 134 human infections with 44 deaths. The host factors contributing to moderate vs. severe disease are not clear. Here, we show that H7N9 severity was associated with a higher level of cytokines/chemokines. We demonstrate that the cytokines in the infected lung were 100- to 1,000-fold higher than those in the plasma. Furthermore, we found that the IFN-induced transmembrane protein-3 (IFITM3) C/C genotype was associated with severe clinical outcome, as reflected by reduced time in seeking medical aid; more rapid progression to acute respiratory distress syndrome; and higher viral load, cytokine/chemokine levels, and mortality rate. Overall, our data suggest that the IFITM3 genotype is a primary driver of the observed differences in clinical outcome after H7N9 infection.
Highlights d 11 neutralizing antibodies against SARS-CoV-2 target three main epitopes on RBD d Epitope-A antibody 414-1 shows neutralizing IC 50 at 1.75 nM d Epitope-B antibody 553-15 can enhance the neutralizing abilities of other antibodies d One neutralizing antibody, 515-5, can cross neutralize SARS-CoV pseudovirus
T cells develop functional defects during HIV-1 infection, partially due to the upregulation of inhibitory receptors such as programmed death-1 (PD-1) and CTLA-4. However, the role of lymphocyte activation gene-3 (LAG-3; CD223), also known as an inhibitory receptor, in HIV infection remains to be determined. In this study, we revealed that LAG-3 on T cells delivers an inhibitory signal to downregulate T cell functionality, thereby playing an immunoregulatory role during persistent HIV-1 infection. We observed that HIV-1 infection results in a significant increase in LAG-3 expression in both the peripheral blood and the lymph nodes. The upregulation of LAG-3 is dramatically manifested on both CD4+ and CD8+ T cells and is correlated with disease progression. As expected, prolonged antiretroviral therapy reduces the expression of LAG-3 on both CD4+ and CD8+ T cells. The ex vivo blockade of LAG-3 significantly augments HIV-specific CD4+ and CD8+ T cell responses, whereas the overexpression of LAG-3 in T cells or the stimulation of LAG-3 on T cells leads to the reduction of T cell responses. Furthermore, most LAG-3 and PD-1 are expressed in different T cell subsets. Taken together, these data demonstrate that the LAG-3/MHC class II pathway plays an immunoregulatory role, thereby providing an important target for enhancing immune reconstitution in HIV-infected patients. Additionally, the LAG-3/MHC class II pathway may synergize with PD-1/PD ligand to enhance T cell–mediated immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.