Huntingtin interacting protein 14 (HIP14, ZDHHC17) is a huntingtin (HTT) interacting protein with palmitoyl transferase activity. In order to interrogate the function of Hip14, we generated mice with disruption in their Hip14 gene. Hip14-/- mice displayed behavioral, biochemical and neuropathological defects that are reminiscent of Huntington disease (HD). Palmitoylation of other HIP14 substrates, but not Htt, was reduced in the Hip14-/- mice. Hip14 is dysfunctional in the presence of mutant htt in the YAC128 mouse model of HD, suggesting that altered palmitoylation mediated by HIP14 may contribute to HD.
The development of animal models of Huntington disease (HD) has enabled studies that help define the molecular aberrations underlying the disease. The BACHD and YAC128 transgenic mouse models of HD harbor a full-length mutant huntingtin (mHTT) and recapitulate many of the behavioural and neuropathological features of the human condition. Here, we demonstrate that while BACHD and YAC128 animals exhibit similar deficits in motor learning and coordination, depressive-like symptoms, striatal volume loss and forebrain weight loss, they show obvious differences in key features characteristic of HD. While YAC128 mice exhibit significant and widespread accumulation of mHTT striatal aggregates, these mHTT aggregates are absent in BACHD mice. Furthermore, the levels of several striatally enriched mRNA for genes, such as DARPP-32, enkephalin, dopamine receptors D1 and D2 and cannabinoid receptor 1, are significantly decreased in YAC128 but not BACHD mice. These findings may reflect sequence differences in the human mHTT transgenes harboured by the BACHD and YAC128 mice, including both single nucleotide polymorphisms as well as differences in the nature of CAA interruptions of the CAG tract. Our findings highlight a similar profile of HD-like behavioural and neuropathological deficits and illuminate differences that inform the use of distinct endpoints in trials of therapeutic agents in the YAC128 and BACHD mice.
The expression of the cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) in the brain and its role in the lipidation of apolipoproteins indicate that ABCA1 may play a critical role in brain cholesterol metabolism. To investigate the role of ABCA1 in brain cholesterol homeostasis and trafficking, we characterized mice that specifically lacked ABCA1 in the CNS, generated using the Cre/loxP recombination system. These mice showed reduced plasma high-density lipoprotein (HDL) cholesterol levels associated with decreased brain cholesterol content and enhanced brain uptake of esterified cholesterol from plasma HDL. Increased levels of HDL receptor SR-BI in brain capillaries and apolipoprotein A-I in brain and CSF of mutant mice were evident. Cholesterol homeostasis changes were mirrored by disturbances in motor activity and sensorimotor function. Changes in synaptic ultrastructure including reduced synapse and synaptic vesicle numbers were observed. These data show that ABCA1 is a key regulator of brain cholesterol metabolism and that disturbances in cholesterol transport in the CNS are associated with structural and functional deficits in neurons. Moreover, our findings also demonstrate that specific changes in brain cholesterol metabolism can lead to alterations in cholesterol uptake from plasma to brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.