The growth properties and antigenic relatedness of the CAN98-75 (CAN75) and the CAN97-83 (CAN83) human metapneumovirus (HMPV) strains, which represent the two distinct HMPV genetic lineages and exhibit 5 and 63% amino acid divergence in the fusion (F) and attachment (G) proteins, respectively, were investigated in vitro and in rodents and nonhuman primates. Both strains replicated to high titers (>6.0 log 10 ) in the upper respiratory tract of hamsters and to moderate titers (>3.6 log 10 ) in the lower respiratory tract. The two lineages exhibited 48% antigenic relatedness based on reciprocal cross-neutralization assay with postinfection hamster sera, and infection with each strain provided a high level of resistance to reinfection with the homologous or heterologous strain. Hamsters immunized with a recombinant human parainfluenza virus type 1 expressing the fusion F protein of the CAN83 strain developed a serum antibody response that efficiently neutralized virus from both lineages and were protected from challenge with either HMPV strain. This result indicates that the HMPV F protein is a major antigenic determinant that mediates extensive cross-lineage neutralization and protection. Both HMPV strains replicated to low titers in the upper and lower respiratory tracts of rhesus macaques but induced high levels of HMPV-neutralizing antibodies in serum effective against both lineages. The level of HMPV replication in chimpanzees was moderately higher, and infected animals developed mild colds. HMPV replicated the most efficiently in the respiratory tracts of African green monkeys, and the infected animals developed a high level of HMPV serum-neutralizing antibodies (1:500 to 1:1,000) effective against both lineages. Reciprocal cross-neutralization assays in which postinfection sera from all three primate species were used indicated that CAN75 and CAN83 are 64 to 99% related antigenically. HMPVinfected chimpanzees and African green monkeys were highly protected from challenge with the heterologous HMPV strain. Taken together, the results from hamsters and nonhuman primates support the conclusion that the two HMPV genetic lineages are highly related antigenically and are not distinct antigenic subtypes or subgroups as defined by reciprocal cross-neutralization in vitro.
We evaluated the individual contributions of the three surface glycoproteins of human metapneumovirus (HMPV), namely the fusion F, attachment G, and small hydrophobic SH proteins, to the induction of serum HMPV-binding antibodies, serum HMPV-neutralizing antibodies, and protective immunity. Using reverse genetics, each HMPV protein was expressed individually from an added gene in recombinant human parainfluenza virus type 1 (rHPIV1) and used to infect hamsters once or twice by the intranasal route. The F protein was highly immunogenic and protective, whereas G and SH were only weakly or negligibly immunogenic and protective, respectively. Thus, in contrast to other paramyxoviruses, the HMPV attachment G protein is not a major neutralization or protective antigen. Also, although the SH protein of HMPV is a virion protein that is much larger than its counterparts in previously studied paramyxoviruses, it does not appear to be a significant neutralization or protective antigen.
This study examines the contribution of the fusion (F) and hemagglutinin-neuraminidase (HN) glycoprotein genes of bovine parainfluenza virus type 3 (BPIV3) to its restricted replication in the respiratory tract of nonhuman primates. A chimeric recombinant human parainfluenza type 3 virus (HPIV3) containing BPIV3 F and HN glycoprotein genes in place of its own and the reciprocal recombinant consisting of BPIV3 bearing the HPIV3 F and HN genes (rBPIV3-F H HN H ) were generated to assess the effect of glycoprotein substitution on replication of HPIV3 and BPIV3 in the upper and lower respiratory tract of rhesus monkeys. The chimeric viruses were readily recovered and replicated in simian LLC-MK2 cells to a level comparable to that of their parental viruses, suggesting that the heterologous glycoproteins were compatible with the PIV3 internal proteins. HPIV3 bearing the BPIV3 F and HN genes was restricted in replication in rhesus monkeys to a level similar to that of its BPIV3 parent virus, indicating that the glycoprotein genes of BPIV3 are major determinants of its host range restriction of replication in rhesus monkeys. rBPIV3-F H HN H replicated in rhesus monkeys to a level intermediate between that of HPIV3 and BPIV3. This observation indicates that the F and HN genes make a significant contribution to the overall attenuation of BPIV3 for rhesus monkeys. Furthermore, it shows that BPIV3 sequences outside the F and HN region also contribute to the attenuation phenotype in primates, a finding consistent with the previous demonstration that the nucleoprotein coding sequence of BPIV3 is a determinant of its attenuation for primates. Despite its restricted replication in the respiratory tract of rhesus monkeys, rBPIV3-F H HN H conferred a level of protection against challenge with HPIV3 that was indistinguishable from that induced by previous infection with wild-type HPIV3. The usefulness of rBPIV3-F H HN H as a vaccine candidate against HPIV3 and as a vector for other viral antigens is discussed.Bovine parainfluenza virus type 3 (BPIV3) is restricted in replication in the respiratory tract of rhesus monkeys, chimpanzees, and humans, and it is being evaluated as a vaccine against human PIV3 (HPIV3) (8,10,12,26,27). HPIV3 and BPIV3 are closely related enveloped, nonsegmented, negativestrand RNA viruses within the Respirovirus genus of the Paramyxoviridae family (2, 10). The two viruses are 25% related antigenically by cross-neutralization studies (8), and they share neutralization epitopes on their fusion (F) and hemagglutininneuraminidase (HN) surface glycoproteins (9, 30). HPIV3 and BPIV3 are essentially identical in genome organization (2). Both viruses encode nine proteins: the nucleoprotein (N), phosphoprotein (P), and large polymerase protein (L) are nucleocapsid-associated proteins; the C, D, and V accessory proteins are proteins of unknown function encoded by the P mRNA or by an edited version thereof; the M protein is an internal matrix protein; and the F and HN glycoproteins are protective antigens of the vi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.