The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous marine animal populations have declined, yet it remains unclear whether these trends are symptomatic of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes—sharks, rays, and chimaeras. We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing (targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher than for most other vertebrates, and only one-third of species are considered safe. Population depletion has occurred throughout the world’s ice-free waters, but is particularly prevalent in the Indo-Pacific Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is urgently needed to avoid extinctions and promote population recovery.DOI: http://dx.doi.org/10.7554/eLife.00590.001
ABSTRACT1. Fishing spans all oceans and the impact on ocean predators such as sharks and rays is largely unknown. A lack of data and complicated jurisdictional issues present particular challenges for assessing and conserving high seas biodiversity. It is clear, however, that pelagic sharks and rays of the open ocean are subject to high and often unrestricted levels of mortality from bycatch and targeted fisheries for their meat and valuable fins.2. These species exhibit a wide range of life-history characteristics, but many have relatively low productivity and consequently relatively high intrinsic vulnerability to over-exploitation. The IUCN } World Conservation Union Red List criteria were used to assess the global status of 21 oceanic pelagic shark and ray species.3. Three-quarters (16) of these species are classified as Threatened or Near Threatened. Eleven species are globally threatened with higher risk of extinction: the giant devilray is Endangered, ten sharks are Vulnerable and a further five species are Near Threatened. Threat status depends on the interaction between the demographic resilience of the species and intensity of fisheries exploitation.4. Most threatened species, like the shortfin mako shark, have low population increase rates and suffer high fishing mortality throughout their range. Species with a lower risk of extinction have either fast, resilient life histories (e.g. pelagic stingray) or are species with slow, less resilient life histories but subject to fisheries management (e.g. salmon shark).5. Recommendations, including implementing and enforcing finning bans and catch limits, are made to guide effective conservation and management of these sharks and rays.
Highlights d More than one-third of chondrichthyan fish species are threatened by overfishing d Disproportionate threat in tropics risk loss of ecosystem functions and services d Three species not seen in >80 years are Critically Endangered (Possibly Extinct)d The depletion of these species has been driven by continuing demand for human food
Overfishing is the primary cause of marine defaunation, yet individual species' declines and rising extinction risk are difficult to measure, particularly for the largest predators found in the high seas 1-3 . We calculate two well-established indicators to track progress towards Aichi Biodiversity Targets and Sustainable Development Goals 4,5 : the Living Planet Index (a measure of changes in abundance aggregating 57 abundance time-series for 18 oceanic shark and ray species), and the Red List Index (a measure of change in extinction risk calculated for all 31 oceanic species). We find that, since 1970, the global abundance of oceanic sharks and rays has declined by 71% due to an 18-fold increase in Relative Fishing Pressure. This depletion elevated global extinction risk to the point where three-quarters of this functionally important assemblage are threatened with extinction. Strict prohibitions and precautionary science-based catch limits are urgently needed to avert population collapse 6,7 , avoid disruption of ecological function, and promote species recovery 8,9 .Over the United Nations 'Decade of Biodiversity' from 2011-2020, governments committed to improve human well-being and food security by safeguarding ecosystem services and halting biodiversity loss 10 . The Sustainable Development Goals, adopted by all United Nations Member States, and the 20 Aichi Biodiversity Targets of the Convention on Biological Diversity, provide a framework to track progress towards the 2020 deadline 4,5,10 . Seafood sustainability is an integral part of these commitments, and wild capture fisheries are essential nutritional and economic resources for millions of people globally 11,12 . Yet beneath the ocean surface, it is difficult to assess changes in the state of biodiversity and ecosystem structure, function, and services 13 .
Sharks, rays, and chimaeras (Class Chondrichthyes; herein 'sharks') are the earliest extant jawed vertebrates and exhibit some of the greatest functional diversity of all vertebrates. Ecologically, they influence energy transfer vertically through trophic levels and sometimes trophic cascades via direct consumption and predation risk. Through movements and migrations, they connect horizontally and temporally across habitats and ecosystems, integrating energy flows at large spatial scales and across time. This connectivity flows from ontogenetic growth in size and spatial movements, which in turn underpins their relatively low reproductive rates compared with other exploited ocean fishes. Sharks are also ecologically and demographically diverse and are taken in a wide variety of fisheries for multiple products (e.g. meat, fins, teeth, and gills). Consequently, a range of fisheries management measures are generally preferable to 'silver bullet' and 'one size fits all' conservation actions. Some species with extremely low annual reproductive output can easily become endangered and hence require strict protections to minimize mortality. Other, more prolific species can withstand fishing over the long term if catches are subject to effective catch limits throughout the species' range. We identify, based on the IUCN Red List status, 64 endangered species in particular need of new or stricter protections and 514 species in need of improvements to fisheries management. We designate priority countries for such actions, recognizing the widely differing fishing pressures and conservation capacity. We hope that this analysis assists efforts to ensure this group of ecologically important and evolutionarily distinct animals can support both ocean ecosystems and human activities in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.