Programmed cell death protein-1/programmed cell death ligand-1 (PD-1/PD-L1) pathway blockade is a promising new cancer therapy. Although PD-1/PD-L1 treatment has yielded clinical benefits in several types of cancer, further studies are required to clarify predictive biomarkers for drug efficacy and to understand the fundamental mechanism of PD-1/PD-L1 interaction between host and tumor cells. Here, we show that exosomes derived from lung cancer cells express PD-L1 and play a role in immune escape by reducing T-cell activity and promoting tumor growth. The abundance of PD-L1 on exosomes represented the quantity of PD-L1 expression on cell surfaces. Exosomes containing PD-L1 inhibited interferon-gamma (IFN-γ) secretion by Jurkat T cells. IFN-γ secretion was restored by PD-L1 knockout or masking on the exosomes. Both forced expression of PD-L1 on cells without PD-L1 and treatment with exosomes containing PD-L1 enhanced tumor growth in vivo. PD-L1 was present on exosomes isolated from the plasma of patients with non-small cell lung cancer, and its abundance in exosomes was correlated with PD-L1 positivity in tumor tissues. Exosomes can impair immune functions by reducing cytokine production and inducing apoptosis in CD8+ T cells. Our findings indicate that tumor-derived exosomes expressing PD-L1 may be an important mediator of tumor immune escape.
PD-L1 and PD-1 were expressed variably in DLBCLs by tumour cells and tumour-infiltrating immune cells and might be potential therapeutic targets using PD-1/PD-L1 blockade.
Immunotherapies targeting the programmed cell death-1/programmed cell death-ligand 1 pathway have emerged as promising therapeutic strategies for lung cancer. However, the expression pattern and prognostic implications of programmed cell death-ligand 1 and 2 and programmed cell death-1 in comparison with the histology and genetic alterations in pulmonary adenocarcinomas remains unclear and thus were addressed here. Programmed cell death-ligand 1 and 2 expression in tumor cells and the quantities of programmed cell death-1 + and CD8 + tumor-infiltrating lymphocytes were immunohistochemically evaluated in 497 resected pulmonary adenocarcinomas and analyzed according to clinicopathological and genetic statuses. Programmed cell death-ligand 1 and 2 expression were observed in 59% and 64% of pulmonary adenocarcinomas, respectively, and showed a strong positive correlation with each other (Po 0.001). Programmed cell death-ligand 1 expression was higher in nodal metastasis cases (P = 0.006), smokers (P = 0.056), poorly differentiated tumors and histologic subtypes of solid and micropapillary patterns (Po0.001). There was no significant difference in programmed cell death-ligand 1 and 2 expression according to EGFR mutation status. However, programmed cell death-ligand 1 expression was correlated with ALK translocation (P = 0.054) and expression of EGFR and MET (Po 0.001). Meanwhile, programmed cell death-ligand 2 expression was correlated with ALK translocation (P = 0.052), and expression of MET (Po 0.001) and ERBB2 (P = 0.013). The numbers of CD8 + and programmed cell death-1 + lymphocytes were higher in smokers (P = 0.012 and 0.016) and MET-expressing adenocarcinomas (Po 0.001). Patients expressing programmed cell death-ligand 1 and/or high ratios of programmed cell death-1 + /CD8 + lymphocytes showed shorter disease-free survival (P = 0.001). Our study demonstrated that programmed cell death-ligand 1 and 2 expression varied with histology, EGFR, ALK, MET, and ERBB2 statuses, and activation of the programmed cell death-1/programmed cell death-ligand 1 pathway may be a poor prognostic factor in pulmonary adenocarcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.