Intensive studies have recently been performed on graphene-based photodetectors, but most of them are based on field effect transistor structures containing mechanically exfoliated graphene, not suitable for practical large-scale device applications. Here we report highefficient photodetector behaviours of chemical vapor deposition grown all-graphene p-n vertical-type tunnelling diodes. The observed photodetector characteristics well follow what are expected from its band structure and the tunnelling of current through the interlayer between the metallic p-and n-graphene layers. High detectivity (B10 12 cm Hz 1/2 W À 1 ) and responsivity (0.4B1.0 A W À 1 ) are achieved in the broad spectral range from ultraviolet to near-infrared and the photoresponse is almost consistent under 6-month operations. The high photodetector performance of the graphene p-n vertical diodes can be understood by the high photocurrent gain and the carrier multiplication arising from impact ionization in graphene.
Graphene quantum dots (GQDs) have received much attention due to their novel phenomena of charge transport and light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Thus, the demonstration of photodetection gain with GQDs would be the basis for a plenty of applications not only as a single-function device in detecting optical signals but also a key component in the optoelectronic integrated circuits. Here, we firstly report high-efficient photocurrent (PC) behaviors of PDs consisting of multiple-layer GQDs sandwiched between graphene sheets. High detectivity (>1011 cm Hz1/2/W) and responsivity (0.2 ~ 0.5 A/W) are achieved in the broad spectral range from UV to near infrared. The observed unique PD characteristics prove to be dominated by the tunneling of charge carriers through the energy states in GQDs, based on bias-dependent variations of the band profiles, resulting in novel dark current and PC behaviors.
Raman-scattering behaviors have been studied in graphene quantum dots (GQDs) by varying their average size (d) from 5 to 35 nm. The peak frequencies of D and 2D bands are almost irrespective of d, and the intensity of the D band is larger than that of the G band over almost full range of d. These results suggest that GQDs are defective, possibly resulting from the dominant contributions from the edge states at the periphery of GQDs. The G band shows a maximum peak frequency at d = ∼17 nm, whilst the full-width half maximum of the G band and the peak-intensity ratio of the D to G bands are minimized at d = ∼17 nm. Since the average thickness of GQDs (t) is proportional to d, t can act as a factor affecting the d-dependent Raman-scattering behaviors, but they cannot be explained solely by the t variation. We propose that the abrupt changes in the Raman-scattering behaviors of GQDs at d = ∼17 nm originate from size-dependent edge-state variation of GQDs at d = ∼17 nm as d increases.
Formation and characterization of graphene p-n junctions are of particular interest because the p-n junctions are used in a wide variety of electronic/photonic systems as building blocks. Graphene p-n junctions have been previously formed by using several techniques, but most of the studies are based on lateral-type p-n junctions, showing no rectification behaviors. Here, we report a new type of graphene p-n junction. We first fabricate and characterize vertical-type graphene p-n junctions with two terminals. One of the most important characteristics of the vertical junctions is the asymmetric rectifying behavior showing an on/off ratio of ~10(3) under bias voltages below ±10 V without gating at higher n doping concentrations, which may be useful for practical device applications. In contrast, at lower n doping concentrations, the p-n junctions are ohmic, consistent with the Klein-tunneling effect. The observed rectification results possibly from the formation of strongly corrugated insulating or semiconducting interlayers between the metallic p- and n-graphene sheets at higher n doping concentrations, which is actually a structure like a metal-insulator-metal or metal-semiconductor-metal tunneling diode. The properties of the diodes are almost invariant even 6 months after fabrication.
Graphene/Si quantum dot (QD) heterojunction diodes are reported for the first time. The photoresponse, very sensitive to variations in the size of the QDs as well as in the doping concentration of graphene and consistent with the quantum-confinement effect, is remarkably enhanced in the near-ultraviolet range compared to commercially available bulk-Si photodetectors. The photoresponse proves to be dominated by the carriertunneling mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.