Mesenchymal stem cell (MSC) is a promising tool for the therapy of immune disorders. However, their efficacy and mechanisms in treating allergic skin disorders are less verified. We sought to investigate the therapeutic efficacy of human umbilical cord blood-derived MSCs (hUCB-MSCs) against murine atopic dermatitis (AD) and to explore distinct mechanisms that regulate their efficacy. AD was induced in mice by the topical application of Dermatophagoides farinae. Na€ ıve or activated-hUCB-MSCs were administered to mice, and clinical severity was determined. The subcutaneous administration of nucleotide-binding oligomerization domain 2 (NOD2)-activated hUCBMSCs exhibited prominent protective effects against AD, and suppressed the infiltration and degranulation of mast cells (MCs). A b-hexosaminidase assay was performed to evaluate the effect of hUCB-MSCs on MC degranulation. NOD2-activated MSCs reduced the MC degranulation via NOD2-cyclooxygenase-2 signaling. In contrast to bone marrow-derived MSCs, hUCB-MSCs exerted a cell-to-cell contact-independent suppressive effect on MC degranulation through the higher production of prostaglandin E 2 (PGE 2 ). Additionally, transforming growth factor (TGF)-b1 production from hUCB-MSCs in response to interleukin-4 contributed to the attenuation of MC degranulation by downregulating FceRI expression in MCs. In conclusion, the subcutaneous application of NOD2-activated hUCB-MSCs can efficiently ameliorate AD, and MSC-derived PGE 2 and TGF-b1 are required for the inhibition of MC degranulation.
CD49f (integrin subunit a6) regulates signaling pathways in a variety of cellular activities. However, the role of CD49f in regulating the differentiation and pluripotency of stem cells has not been fully investigated. Therefore, in this study, human mesenchymal stem cells (hMSCs) were induced to form spheres under nonadherent culture conditions, and we found that the CD49f-positive population was enriched in MSC spheres compared with MSCs in a monolayer. The expression of CD49f regulated the ability of hMSCs to form spheres and was associated with an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Furthermore, the forced expression of CD49f modulated the proliferation and differentiation potentials of hMSCs through prolonged activation of PI3K/AKT and suppressed the level of p53. We showed that the pluripotency factors OCT4 and SOX2 were recruited to the putative promoter region of CD49f, indicating that OCT4 and SOX2 play positive roles in the expression of CD49f. Indeed, CD49f expression was upregulated in human embryonic stem cells (hESCs) compared with hMSCs. The elevated level of CD49f expression was significantly decreased upon embryoid body formation in hESCs. In hESCs, the knockdown of CD49f downregulated PI3K/AKT signaling and upregulated the level of p53, inducing differentiation into three germ layers. Taken together, our data suggest that the cell-surface protein CD49f has novel and dynamic roles in regulating the differentiation potential of hMSCs and maintaining pluripotency. STEM CELLS 2012;30:876-887 Disclosure of potential conflicts of interest is found at the end of this article.
Rheumatoid arthritis (RA) is a long-lasting intractable autoimmune disorder, which has become a substantial public health problem. Despite widespread use of biologic drugs, there have been uncertainties in efficacy and long-term safety. Mesenchymal stem cells (MSCs) have been suggested as a promising alternative for the treatment of RA because of their immunomodulatory properties. However, the precise mechanisms of MSCs on RA-related immune cells are not fully elucidated. The aim of this study was to investigate the therapeutic potential of human umbilical cord blood-derived MSCs (hUCB-MSCs) as a new therapeutic strategy for patients with RA and to explore the mechanisms underlying hUCB-MSC-mediated immunomodulation. Mice with collagen-induced arthritis (CIA) were administered with hUCB-MSCs after the onset of disease, and therapeutic efficacy was assessed. Systemic delivery of hUCB-MSCs significantly ameliorated the severity of CIA to a similar extent observed in the etanercept-treated group. hUCB-MSCs exerted this therapeutic effect by regulating macrophage function. To verify the regulatory effects of hUCB-MSCs on macrophages, macrophages were co-cultured with hUCB-MSCs. The tumor necrosis factor (TNF)-α-mediated activation of cyclooxygenase-2 and TNF-stimulated gene/protein 6 in hUCB-MSCs polarized naive macrophages toward an M2 phenotype. In addition, hUCB-MSCs down-regulated the activation of nucleotide-binding domain and leucine-rich repeat pyrin 3 inflammasome via a paracrine loop of interleukin-1β signaling. These immune-balancing effects of hUCB-MSCs were reproducible in co-culture experiments using peripheral blood mononuclear cells from patients with active RA. hUCB-MSCs can simultaneously regulate multiple cytokine pathways in response to pro-inflammatory cytokines elevated in RA microenvironment, suggesting that treatment with hUCB-MSCs could be an attractive candidate for patients with treatment-refractory RA.
A recent study has suggested that fibroblasts can be converted into mouse-induced neural stem cells (miNSCs) through the expression of defined factors. However, successful generation of human iNSCs (hiNSCs) has proven challenging to achieve. Here, using microRNA (miRNA) expression profile analyses, we showed that let-7 microRNA has critical roles for the formation of PAX6/NESTIN-positive colonies from human adult fibroblasts and the proliferation and self-renewal of hiNSCs. HMGA2, a let-7-targeting gene, enables induction of hiNSCs that displayed morphological/molecular features and in vitro/in vivo differentiation potential similar to H9-derived NSCs. Interestingly, HMGA2 facilitated the efficient conversion of senescent somatic cells or blood CD34+ cells into hiNSCs through an interaction with SOX2, whereas other combinations or SOX2 alone showed a limited conversion ability. Taken together, these findings suggest that HMGA2/let-7 facilitates direct reprogramming toward hiNSCs in minimal conditions and maintains hiNSC self-renewal, providing a strategy for the clinical treatment of neurological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.