The addition of iron to high-nutrient, low-chlorophyll regions induces phytoplankton blooms that take up carbon. Carbon export from the surface layer and, in particular, the ability of the ocean and sediments to sequester carbon for many years remains, however, poorly quantified. Here we report data from the CROZEX experiment in the Southern Ocean, which was conducted to test the hypothesis that the observed north-south gradient in phytoplankton concentrations in the vicinity of the Crozet Islands is induced by natural iron fertilization that results in enhanced organic carbon flux to the deep ocean. We report annual particulate carbon fluxes out of the surface layer, at three kilometres below the ocean surface and to the ocean floor. We find that carbon fluxes from a highly productive, naturally iron-fertilized region of the sub-Antarctic Southern Ocean are two to three times larger than the carbon fluxes from an adjacent high-nutrient, low-chlorophyll area not fertilized by iron. Our findings support the hypothesis that increased iron supply to the glacial sub-Antarctic may have directly enhanced carbon export to the deep ocean. The CROZEX sequestration efficiency (the amount of carbon sequestered below the depth of winter mixing for a given iron supply) of 8,600 mol mol(-1) was 18 times greater than that of a phytoplankton bloom induced artificially by adding iron, but 77 times smaller than that of another bloom initiated, like CROZEX, by a natural supply of iron. Large losses of purposefully added iron can explain the lower efficiency of the induced bloom(6). The discrepancy between the blooms naturally supplied with iron may result in part from an underestimate of horizontal iron supply.
time it grows to 1 cm in shell diameter 21 . Analysis was carried out on both freshly 90 caught material preserved directly upon collection and on specimens that were 91 incubated under manipulated CO 2 levels (375 to 750 parts per million at 4°C) in order 92 to establish a response index. All freshly-caught and incubated specimens were 93 preserved in 70% ethanol. Subsequently, they were treated to dehydrate shell-layers 94 and to remove the periostracum (Fig. 3) so that the state of the underlying shell matrix 95 could be examined using SEM. 96 97 Different degrees of dissolution were identified in incubated shells of live pteropods 98 (see supplementary information). We categorised them into three main levels 99 according to the degree of encroachment upon the upper prismatic layer and into the 100 upper shell layer (Fig. 4). Specimens were scored blind and then correlated back to 101 5 the experimental conditions. Incubations in which even only a slight degree of 102 undersaturation was experienced for 8 d (Ω A 0.94-1.12, pCO 2 of 675 µatm) was 103 sufficient to cause substantial dissolution of the shell matrix relative to the 104 supersaturated control (Ω A 1.62-1.78, Fig. 5). We then examined freshly caught 105 material, preserved directly upon collection, for signs of such shell dissolution. 106 107 L. helicina antarctica juveniles were found at all sampling stations, with northern 108 stations (<57ºS) containing higher abundances (7.2 x 10 4 to 3.4 x 10 4 ind. m -2 ) than 109 those to the south (>57ºS; 2.9 x 10 2 to 1.9 x 10 3 ind. m -2 ). At station Su9, we found L.
International audienceAntarctic krill Euphausia superba (hereafter `krill') occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has in creased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved. [GRAPHICS]
A compilation of more than 30 studies shows that adult Antarctic krill (Euphausia superba) may frequent benthic habitats year-round, in shelf as well as oceanic waters and throughout their circumpolar range. Net and acoustic data from the Scotia Sea show that in summer 2-20% of the population reside at depths between 200 and 2000 m, and that large aggregations can form above the seabed. Local differences in the vertical distribution of krill indicate that reduced feeding success in surface waters, either due to predator encounter or food shortage, might initiate such deep migrations and results in benthic feeding. Fatty acid and microscopic analyses of stomach content confirm two different foraging habitats for Antarctic krill: the upper ocean, where fresh phytoplankton is the main food source, and deeper water or the seabed, where detritus and copepods are consumed. Krill caught in upper waters retain signals of benthic feeding, suggesting frequent and dynamic exchange between surface and seabed. Krill contained up to 260 nmol iron per stomach when returning from seabed feeding. About 5% of this iron is labile, i.e., potentially available to phytoplankton. Due to their large biomass, frequent benthic feeding, and acidic digestion of particulate iron, krill might facilitate an input of new iron to Southern Ocean surface waters. Deep migrations and foraging at the seabed are significant parts of krill ecology, and the vertical fluxes involved in this behavior are important for the coupling of benthic and pelagic food webs and their elemental repositories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.