Anthropogenic land-cover change is driving biodiversity loss worldwide. At the epicenter of this crisis lies Southeast Asia, where biodiversity-rich forests are being converted to oil-palm monocultures. As demand for palm oil increases, there is an urgent need to find strategies that maintain biodiversity in plantations. Previous studies found that retaining forest patches within plantations benefited some terrestrial taxa but not others. However, no study has focused on aquatic taxa such as fishes, despite their importance to human well-being. We assessed the efficacy of forested riparian reserves in conserving freshwater fish biodiversity in oil-palm monoculture by sampling stream fish communities in an oil-palm plantation in Central Kalimantan, Indonesia. Forested riparian reserves maintained preconversion local fish species richness and functional diversity. In contrast, local and total species richness, biomass, and functional diversity declined markedly in streams without riparian reserves. Mechanistically, riparian reserves appeared to increase local species richness by increasing leaf litter cover and maintaining coarse substrate. The loss of fishes specializing in leaf litter and coarse substrate decreased functional diversity and altered community composition in oil-palm plantation streams that lacked riparian reserves. Thus, a land-sharing strategy that incorporates the retention of forested riparian reserves may maintain the ecological integrity of fish communities in oil-palm plantations. We urge policy makers and growers to make retention of riparian reserves in oil-palm plantations standard practice, and we encourage palm-oil purchasers to source only palm oil from plantations that employ this practice.
Among the 899 species of freshwater fishes reported from Sundaland biodiversity hotspot, nearly 50% are endemics. The functional integrity of aquatic ecosystems is currently jeopardized by human activities, and landscape conversion led to the decline of fish populations in several part of Sundaland, particularly in Java. The inventory of the Javanese ichthyofauna has been discontinuous, and the taxonomic knowledge is scattered in the literature. This study provides a DNA barcode reference library for the inland fishes of Java and Bali with the aim to streamline the inventory of fishes in this part of Sundaland. Owing to the lack of available checklist for estimating the taxonomic coverage of this study, a checklist was compiled based on online catalogues. A total of 95 sites were visited, and a library including 1046 DNA barcodes for 159 species was assembled. Nearest neighbour distance was 28-fold higher than maximum intraspecific distance on average, and a DNA barcoding gap was observed. The list of species with DNA barcodes displayed large discrepancies with the checklist compiled here as only 36% (i.e. 77 species) and 60% (i.e. 24 species) of the known species were sampled in Java and Bali, respectively. This result was contrasted by a high number of new occurrences and the ceiling of the accumulation curves for both species and genera. These results highlight the poor taxonomic knowledge of this ichthyofauna, and the apparent discrepancy between present and historical occurrence data is to be attributed to species extirpations, synonymy and misidentifications in previous studies.
Sundaland constitutes one of the largest and most threatened biodiversity hotspots; however, our understanding of its biodiversity is afflicted by knowledge gaps in taxonomy and distribution patterns. The subfamily Rasborinae is the most diversified group of freshwater fishes in Sundaland. Uncertainties in their taxonomy and systematics have constrained its use as a model in evolutionary studies. Here, we established a DNA barcode reference library of the Rasborinae in Sundaland to examine species boundaries and range distributions through DNA-based species delimitation methods. A checklist of the Rasborinae of Sundaland was compiled based on online catalogs and used to estimate the taxonomic coverage of the present study. We generated a total of 991 DNA barcodes from 189 sampling sites in Sundaland. Together with 106 previously published sequences, we subsequently assembled a reference library of 1097 sequences that covers 65 taxa, including 61 of the 79 known Rasborinae species of Sundaland. Our library indicates that Rasborinae species are defined by distinct molecular lineages that are captured by species delimitation methods. A large overlap between intraspecific and interspecific genetic distance is observed that can be explained by the large amounts of cryptic diversity as evidenced by the 166 Operational Taxonomic Units detected. Implications for the evolutionary dynamics of species diversification are discussed.
DNA barcoding opens new perspectives on the way we document biodiversity. Initially proposed to circumvent the limits of morphological characters to assign unknown individuals to known species, DNA barcoding has been used in a wide array of studies where collecting species identity constitutes a crucial step. The assignment of unknowns to knowns assumes that species are already well identified and delineated, making the assignment performed reliable. Here, we used DNA‐based species delimitation and specimen assignment methods iteratively to tackle the inventory of the Indo‐Australian Archipelago grey mullets, a notorious case of taxonomic complexity that requires DNA‐based identification methods considering that traditional morphological identifications are usually not repeatable and sequence mislabeling is common in international sequence repositories. We first revisited a DNA barcode reference library available at the global scale for Mugilidae through different DNA‐based species delimitation methods to produce a robust consensus scheme of species delineation. We then used this curated library to assign unknown specimens collected throughout the Indo‐Australian Archipelago to known species. A second iteration of OTU delimitation and specimen assignment was then performed. We show the benefits of using species delimitation and specimen assignment methods iteratively to improve the accuracy of specimen identification and propose a workflow to do so.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.