The transitions from foraging to farming and later to pastoralism in Stone Age Eurasia (c. 11-3 thousand years before present, BP) represent some of the most dramatic lifestyle changes in human evolution. We sequenced 317 genomes of primarily Mesolithic and Neolithic individuals from across Eurasia combined with radiocarbon dates, stable isotope data, and pollen records. Genome imputation and co-analysis with previously published shotgun sequencing data resulted in >1600 complete ancient genome sequences offering fine-grained resolution into the Stone Age populations. We observe that: 1) Hunter-gatherer groups were more genetically diverse than previously known, and deeply divergent between western and eastern Eurasia. 2) We identify hitherto genetically undescribed hunter-gatherers from the Middle Don region that contributed ancestry to the later Yamnaya steppe pastoralists; 3) The genetic impact of the Neolithic transition was highly distinct, east and west of a boundary zone extending from the Black Sea to the Baltic. Large-scale shifts in genetic ancestry occurred to the west of this "Great Divide", including an almost complete replacement of hunter-gatherers in Denmark, while no substantial ancestry shifts took place during the same period to the east. This difference is also reflected in genetic relatedness within the populations, decreasing substantially in the west but not in the east where it remained high until c. 4,000 BP; 4) The second major genetic transformation around 5,000 BP happened at a much faster pace with Steppe-related ancestry reaching most parts of Europe within 1,000-years. Local Neolithic farmers admixed with incoming pastoralists in eastern, western, and southern Europe whereas Scandinavia experienced another near-complete population replacement. Similar dramatic turnover-patterns are evident in western Siberia; 5) Extensive regional differences in the ancestry components involved in these early events remain visible to this day, even within countries. Neolithic farmer ancestry is highest in southern and eastern England while Steppe-related ancestry is highest in the Celtic populations of Scotland, Wales, and Cornwall (this research has been conducted using the UK Biobank resource); 6) Shifts in diet, lifestyle and environment introduced new selection pressures involving at least 21 genomic regions. Most such variants were not universally selected across populations but were only advantageous in particular ancestral backgrounds. Contrary to previous claims, we find that selection on the FADS regions, associated with fatty acid metabolism, began before the Neolithisation of Europe. Similarly, the lactase persistence allele started increasing in frequency before the expansion of Steppe-related groups into Europe and has continued to increase up to the present. Along the genetic cline separating Mesolithic hunter-gatherers from Neolithic farmers, we find significant correlations with trait associations related to skin disorders, diet and lifestyle and mental health status, suggesting marked phenotypic differences between these groups with very different lifestyles. This work provides new insights into major transformations in recent human evolution, elucidating the complex interplay between selection and admixture that shaped patterns of genetic variation in modern populations.
The rise of ancient genomics has revolutionised our understanding of human prehistory but this work depends on the availability of suitable samples. Here we present a complete ancient human genome and oral microbiome sequenced from a 5700 year-old piece of chewed birch pitch from Denmark. We sequence the human genome to an average depth of 2.3× and find that the individual who chewed the pitch was female and that she was genetically more closely related to western hunter-gatherers from mainland Europe than hunter-gatherers from central Scandinavia. We also find that she likely had dark skin, dark brown hair and blue eyes. In addition, we identify DNA fragments from several bacterial and viral taxa, including Epstein-Barr virus, as well as animal and plant DNA, which may have derived from a recent meal. The results highlight the potential of chewed birch pitch as a source of ancient DNA.
The introduction of pottery vessels to Europe has long been seen as closely linked with the spread of agriculture and pastoralism from the Near East. The adoption of pottery technology by hunter–gatherers in Northern and Eastern Europe does not fit this paradigm, and its role within these communities is so far unresolved. To investigate the motivations for hunter–gatherer pottery use, here, we present the systematic analysis of the contents of 528 early vessels from the Baltic Sea region, mostly dating to the late 6th–5th millennium cal BC, using molecular and isotopic characterization techniques. The results demonstrate clear sub-regional trends in the use of ceramics by hunter–gatherers; aquatic resources in the Eastern Baltic, non-ruminant animal fats in the Southeastern Baltic, and a more variable use, including ruminant animal products, in the Western Baltic, potentially including dairy. We found surprisingly little evidence for the use of ceramics for non-culinary activities, such as the production of resins. We attribute the emergence of these sub-regional cuisines to the diffusion of new culinary ideas afforded by the adoption of pottery, e.g. cooking and combining foods, but culturally contextualized and influenced by traditional practices.
We present the analysis of an osseous finger ring from a predominantly early Neolithic context in Denmark. To characterize the artefact and identify the raw material used for its manufacture, we performed micro-computed tomography scanning, zooarchaeology by mass spectrometry (ZooMS) peptide mass fingerprinting, as well as protein sequencing by liquid chromatography tandem mass spectrometry (LC-MS/MS). We conclude that the ring was made from long bone or antler due to the presence of osteons (Haversian canals). Subsequent ZooMS analysis of collagen I and II indicated that it was made from Alces alces or Cervus elaphus material. We then used LC-MS/MS analysis to refine our species identification, confirming that the ring was made from Cervus elaphus , and to examine the rest of the proteome. This study demonstrates the potential of ancient proteomics for species identification of prehistoric artefacts made from osseous material.
Artificial illumination is a fundamental human need. Burning wood and other materials usually in hearths and fireplaces extended daylight hours, whilst the use of flammable substances in torches offered light on the move. It is increasingly understood that pottery played a role in light production. In this study, we focus on ceramic oval bowls, made and used primarily by hunter-gatherer-fishers of the circum-Baltic over a c. 2000 year period beginning in the mid-6th millennium cal bc. Oval bowls commonly occur alongside larger (cooking) vessels. Their function as ‘oil lamps’ for illumination has been proposed on many occasions but only limited direct evidence has been secured to test this functional association. This study presents the results of molecular and isotopic analysis of preserved organic residues obtained from 115 oval bowls from 25 archaeological sites representing a wide range of environmental settings. Our findings confirm that the oval bowls of the circum-Baltic were used primarily for burning fats and oils, predominantly for the purposes of illumination. The fats derive from the tissues of marine, freshwater, and terrestrial organisms. Bulk isotope data of charred surface deposits show a consistently different pattern of use when oval bowls are compared to other pottery vessels within the same assemblage. It is suggested that hunter-gatherer-fishers around the 55th parallel commonly deployed material culture for artificial light production but the evidence is restricted to times and places where more durable technologies were employed, including the circum-Baltic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.