The proposed model for the wind speed deficit in wind farms is analytical and encompasses both small wind farms and wind farms extending over large areas. As is often the need for offshore wind farms, the model handles a regular array geometry with straight rows of wind turbines and equidistant spacing between units in each row and equidistant spacing between rows. Firstly, the case with the flow direction being parallel to rows in a rectangular geometry is considered by defining three flow regimes. Secondly, when the flow is not in line with the main rows, solutions are suggested for the patterns of wind turbine units corresponding to each wind direction. The presentation is an outline of a model complex that will be adjusted and calibrated with measurements in the near future. Copyright © 2006 John Wiley & Sons, Ltd.
Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at Høvsøre (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a height of 50-80 m. At higher levels deviations from the measurements progressively occur. For applied use an extension to the wind profile in the surface layer is formulated for the entire boundary layer, with emphasis on the lowest 200-300 m and considering only wind speeds above 3 m s −1 at 10 m height. The friction velocity is taken to decrease linearly through the boundary layer. The wind profile length scale is composed of three component length scales. In the surface layer the first length scale is taken to increase linearly with height with a stability correction following Monin-Obukhov similarity. Above the surface layer the second length scale (L MBL ) becomes independent of height but not of stability, and at the top of the boundary layer the third length scale is assumed to be negligible. A simple model for the combined length scale that controls the wind profile and its stability dependence is formulated by inverse summation. Based on these assumptions the wind profile for the entire boundary layer is derived. A parameterization of L MBL is formulated using the geostrophic drag law, which relates friction velocity and geostrophic wind. The empirical parameterization of the resistance law functions A and B in the geostrophic drag law is uncertain, making it impractical. Therefore an expression for the length scale, L MBL , for applied use is suggested, based on measurements from the two sites.
close to the observed value 29sin(ᐉ ϩ 241°) mas. 23. We thank the Mars Pathfinder project team for their enthusiasm and assistance in acquiring and understanding the tracking measurements; R. Wimberly for recovery of the Viking lander Doppler data; and J. Williams and an anonymous referee for helpful suggestions. The research described in this paper was carried out by the Jet Propulsion Laboratory, Califor- The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET ) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol ϭ 1 martian day ϭ 24.7 hours). The atmospheric structure and the weather record are similar to those observed by the Viking 1 lander ( VL-1) at the same latitude, altitude, and season 21 years ago, but there are differences related to diurnal effects and the surface properties of the landing site. These include a cold nighttime upper atmosphere; atmospheric temperatures that are 10 to 12 degrees kelvin warmer near the surface; light slope-controlled winds; and dust devils, identified by their pressure, wind, and temperature signatures. The results are consistent with the warm, moderately dusty atmosphere seen by VL-1.The ASI/MET experiment consists of a suite of sensors designed to measure the vertical structure of the atmosphere during entry, descent, and landing (EDL) and to study martian surface meteorology and climate for the duration of the Pathfinder mission (1, 2). In situ vertical structure measurements were made only twice by the Viking entry vehicles (3), both during the daytime. In addition to adding a third profile, ASI/MET provides the first nighttime observation, giving information about the diurnal variation of vertical structure, particularly in the upper atmosphere, which is inaccessible to existing remote-sensing techniques. Both Viking landers obtained records of atmospheric pressure, temperature, and wind velocity at the surface that extended over several Mars years. More recent Earth-based, disk-averaged microwave observations have been interpreted to indicate episodic cooling of the martian lower atmosphere by about 20 K relative to the conditions observed during the Viking missions (4). By continuing the Viking record after 21 years, ASI/MET results are able to determine whether martian meteorology and climate have changed or remained stable in the late northern summer. Improved measurement sensitivity and temporal resolution (2) also reveal phenomena not seen by Viking and, together with temperature measurements at three levels, give better information on the exchange of heat and momentum between the atmosphere and the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.