An earthquake doublet (Mw 7.8 and Mw 7.6) occurred on the East Anatolian Fault Zone (EAFZ) on February 6th, 2023. The events produced significant ground motions and caused major impacts to life and infrastructure throughout SE Türkiye and NW Syria. Here we show the results of earthquake relocations of the first 11 days of aftershocks and rupture models for both events inferred from the kinematic inversion of HR-GNSS and strong motion data considering a multi-fault, 3D geometry. We find that the first event nucleated on a previously unmapped fault before transitioning to the East Anatolian Fault (EAF) rupturing for ~350 km and that the second event ruptured the Sürgü fault for ~160 km. Maximum rupture speeds were estimated to be 3.2 km/s for the Mw 7.8 event. For the Mw 7.6 earthquake, we find super-shear rupture at 4.8 km/s westward but sub-shear eastward rupture at 2.8 km/s. Peak slip for both events were as large as ~8m and ~6m, respectively.
Summary
Here we present the results of a kinematic slip model of the 2020 Mw 6.7 Doğanyol-Sivrice, Turkey Earthquake, the most important event in the last 50 years on the East Anatolian Fault zone. Our slip model is constrained by two Sentinel-1 interferograms and by 5 three-component high-rate GNSS recordings close to the earthquake source. We find that most of the slip occurs predominantly in three regions, two of them at between 2 and 10 km depth and a deeper slip region extending down to 20 km depth. We also relocate the first two weeks of aftershocks and find a distribution of events that agrees with these slip features. The HR-GNSS recordings suggest a predominantly unilateral rupture with the effects of a directivity pulse clearly seen in the waveforms and in the measure peak ground velocities. The slip model supports rupture propagation from northeast to southwest at a relatively slow speed of 2.2 km/s and a total source duration of ∼20 s. In the absence of near-source seismic stations, space geodetic data provide the best constraint on the spatial distribution of slip and on its time evolution.
The Parnitha mountain range lies between two Quaternary rift systems in central Greece: the Gulf of Corinth Rift and the Gulf of Evia rift. We suggest that the range was formed by footwall uplift on active normal faults striking WNW–ESE and NE–SW. We investigated the scarp appearance, geometry and slip rates of three normal faults bounding this mountain range by field mapping at 1:5000 scale. Active faults studied include the 8.5 km long Fili Fault, the 4.7 km long Maliza Fault and the 4 km long Thrakomakedones Fault. We calculated comparable mean slip rates for all mapped faults (Fili: 0.18 mm/yr, Avlon: 0.2 mm/yr, Thrakomakedones: 0.24 mm/yr); however, we suggest that the WNW–ESE structures are more active during the Late Quaternary because of abundant field evidence of recent movements along slip surfaces (fresh basal stripes and slickenlines). In addition, stress axes analysis shows a N7°E–N25°E (NNE–SSW) oriented, extensional stress field, which is compatible with the focal mechanism of the Athens 1999 earthquake. The fault-slip data from the Parnitha faults show orientations similar to other low-strain areas in central Greece, such as the Gulf of Evia Rift to the north. Our slip rate estimates may explain the low recurrence of large earthquakes in Attica as opposed to high slip rate areas in central Greece such as the neighbouring Gulf of Corinth
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.