Severe acute malnutrition (SAM) is associated with inadequate diet, low levels of plasma antioxidants and gut microbiota alterations. The link between gut redox and microbial alterations, however, remains unexplored. By sequencing the gut microbiomes of 79 children of varying nutritional status from three centers in Senegal and Niger, we found a dramatic depletion of obligate anaerobes in malnutrition. This was confirmed in an individual patient data meta-analysis including 107 cases and 77 controls from 5 different African and Asian countries. Specifically, several species of the Bacteroidaceae, Eubacteriaceae, Lachnospiraceae and Ruminococceae families were consistently depleted while Enterococcus faecalis, Escherichia coli and Staphylococcus aureus were consistently enriched. Further analyses on our samples revealed increased fecal redox potential, decreased total bacterial number and dramatic Methanobrevibacter smithii depletion. Indeed, M. smithii was detected in more than half of the controls but in none of the cases. No causality was demonstrated but, based on our results, we propose a unifying theory linking microbiota specificity, lacking anaerobes and archaea, to low antioxidant nutrients, and lower food conversion.
Severe acute malnutrition is the world-leading cause of children under-five's death. Recent metagenomics studies have established a link between gut microbiota and severe acute malnutrition, describing an immaturity with a striking depletion in oxygen-sensitive prokaryotes. Amoxicillin and therapeutic diet cure most of the children with severe acute malnutrition but an irreversible disruption of the gut microbiota is suspected in the refractory and most severe cases. In these cases, therapeutic diet may be unable to reverse the microbiota alteration leading to persistent impaired development or death. In addition, as enteric sepsis is a major cause of death in this context, identification of missing gut microbes to be tested as probiotics (live bacteria that confer a benefit to the host) to restore rapidly the healthy gut microbiota and prevent the gut pathogenic invasion is of foremost importance. In this study, stool samples of malnourished patients with kwashiorkor and healthy children were collected from Niger and Senegal and analyzed by culturomics and metagenomics. We found a globally decreased diversity, a decrease in the hitherto unknown diversity (new species isolation), a depletion in oxygen-sensitive prokaryotes including Methanobrevibacter smithii and an enrichment in potentially pathogenic Proteobacteria, Fusobacteria and Streptococcus gallolyticus. A complex of 12 species identified only in healthy children using culturomics and metagenomics were identified as probiotics candidates, providing a possible, defined, reproducible, safe, and convenient alternative to fecal transplantation to restore a healthy gut microbiota in malnourished children. Microbiotherapy based on selected strains has the potential to improve the current treatment of severe acute malnutrition and prevent relapse and death by reestablishing a healthy gut microbiota.
There is a significant gap in our knowledge of the microbe–host relationship between urban and traditional rural populations. We conducted a large-scale study to examine the gut microbiota of different traditional rural and urban lifestyles in human populations. Using high-throughput 16S ribosomal RNA gene amplicon sequencing, we tested urban French, Saudi, Senegalese, Nigerian and Polynesian individuals as well as individuals living in traditional rural societies, including Amazonians from French Guiana, Congolese Pygmies, Saudi Bedouins and Algerian Tuaregs. The gut microbiota from individuals living in traditional rural settings clustered differently and presented significantly higher diversity than those of urban populations (p 0.01). The bacterial taxa identified by class analysis as contributing most significantly to each cluster were Phascolarctobacterium for traditional rural individuals and Bifidobacterium for urban individuals. Spirochaetae were only present in the gut microbiota of individuals from traditional rural societies, and the gut microbiota of all traditional rural populations was enriched with Treponema succinifaciens. Cross-transmission of Treponema from termites or swine to humans or the increased use of antibiotics in nontraditional populations may explain why Treponema is present only in the gut microbiota of traditional rural populations.
Kwashiorkor and marasmus are considered to be two different clinical diseases resulting from severe malnutrition, but this distinction has been questioned. In a previous study comparing children with kwashiorkor and healthy children from Niger and Senegal, we found a dramatic gut microbiota alteration with a predominant depletion of anaerobes and enrichment in Proteobacteria and Fusobacteria in kwashiorkor. However, it remained unknown whether this association was related to malnutrition or was a specific feature of kwashiorkor. In this continuation study, we added 7 new marasmus subjects and 71,162 new colonies from the same countries. Our results showed that, compared to marasmus, the kwashiorkor gut microbiota was characterized by an increased proportion of Proteobacteria (culturomics, Marasmus 5.0%, Kwashiorkor 16.7%, p < 0.0001; metagenomics, Marasmus 14.7%, Kwashiorkor 22.0%, p = 0.001), but there was a decreased proportion of Bacteroidetes in marasmus (culturomics, Marasmus 0.8%, Kwashiorkor 6.5%, p = 0.001; metagenomics, Marasmus 5.4%, Kwashiorkor 7.0%, p = 0.03). Fusobacterium was more frequently cultured from kwashiorkor. All detected potential pathogenic species were enriched in the kwashiorkor gut microbiota. These results provide a biological basis to support the usage of an antibiotic therapy more effective in suppressing the overgrowth of bacterial communities resistant to penicillin, combined with antioxidants and probiotics for nutritional recovery therapies, particularly for kwashiorkor.
Culturomics investigates microbial diversity of the human microbiome by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene identification. The present study allowed identification of four putative new Clostridium sensu stricto species: ‘Clostridium amazonitimonense’ strain LF2T, ‘Clostridium massilidielmoense’ strain MT26T, ‘Clostridium nigeriense’ strain Marseille-P2414T and ‘Clostridium merdae’ strain Marseille-P2953T, which we describe using the concept of taxonogenomics. We describe the main characteristics of each bacterium and present their complete genome sequence and annotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.