Background Evidence of immune-mediated neurological syndromes associated with the severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection is limited. We therefore investigated clinical, serological and CSF features of coronavirus disease 2019 (COVID-19) patients with neurological manifestations. Methods Consecutive COVID-19 patients with neurological manifestations other than isolated anosmia and/or non-severe headache, and with no previous neurological or psychiatric disorders were prospectively included. Neurological examination was performed in all patients and lumbar puncture with CSF examination was performed when not contraindicated. Serum anti-gangliosides antibodies were tested when clinically indicated. Results Of the 349 COVID-19 admitted to our center between March 23rd and April 24th 2020, 15 patients (4.3%) had neurological manifestations and fulfilled the study inclusion/exclusion criteria. CSF examination was available in 13 patients and showed lymphocytic pleocytosis in 2 patients: 1 with anti-contactin-associated protein 2 (anti-Caspr2) antibody encephalitis and 1 with meningo-polyradiculitis. Increased serum titer of anti-GD1b antibodies was found in three patients and was associated with variable clinical presentations, including cranial neuropathy with meningo-polyradiculitis, brainstem encephalitis and delirium. CSF PCR for SARS-CoV-2 was negative in all patients. Conclusions In SARS-Cov-2 infected patients with neurological manifestations, CSF pleocytosis is associated with para- or post-infectious encephalitis and polyradiculitis. Anti-GD1b and anti-Caspr2 autoantibodies can be identified in certain cases, raising the question of SARS-CoV-2-induced secondary autoimmunity.
The exact pathogenesis of multiple sclerosis (MS) is incompletely understood. Although auto-immune responses have an important role in the development of hallmark focal demyelinating lesions, the underlying mechanism of axonal degeneration, the other key player in MS pathology and main determinant of long-term disability, remains unclear and corresponds poorly with inflammatory disease activity. Perfusion-weighted imaging studies have demonstrated that there is a widespread cerebral hypoperfusion in patients with MS, which is present from the early beginning to more advanced disease stages. This reduced cerebral blood flow (CBF) does not seems to be secondary to loss of axonal integrity with decreased metabolic demands but appears to be mediated by elevated levels of the potent vasospastic peptide endothelin-1 in the cerebral circulation. Evidence is evolving that cerebral hypoperfusion in MS is associated with chronic hypoxia, focal lesion formation, diffuse axonal degeneration, cognitive dysfunction, and fatigue. Restoring CBF may therefore emerge as a new therapeutic target in MS.
Fatigue is frequent and disabling in persons with multiple sclerosis (pwMS) with mild neurological disability. These patients also have impaired physical fitness. Whether mildly disabled pwMS are deconditioned, and this deconditioning is linked to fatigue, remains unknown. Our aim is to determine the physical fitness of mildly disabled patients with multiple sclerosis and study its relationship with perceived fatigue and to link perceived fatigue with other parameters. Twenty patients (14 women; mean age: 45.5 years) with mild disability (Expanded Disability Status Scale 0-4) underwent a 2-min walking test, Timed Up-and-Go test, aerobic capacity testing, and isometric knee extension testing to assess strength and neuromuscular fatigability. They completed questionnaires assessing perceived fatigue, psychological status, and physical activity. Correlation coefficients and multivariate regression were used to analyze the relationships among variables. Seventeen (85%) patients reported a high level of fatigue. Thirteen (65%) patients had subnormal aerobic capacity. Fatigue was weakly to moderately associated with aerobic capacity, mobility, walking capacity, depression, and neuromuscular fatigability. An association of disease duration, aerobic capacity, and the neuromuscular fatigability index explained 65.1% of fatigue. A high proportion of pwMS with mild neurological disability are fatigued and deconditioned. Perceived fatigue is linked to aerobic capacity, neuromuscular fatigability, depression, mobility, and walking capacity. Focusing on these parameters could help in the management of fatigue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.