Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and non-coding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains and updates the GO knowledgebase. The GO knowledgebase consists of three components: 1) the Gene Ontology – a computational knowledge structure describing functional characteristics of genes; 2) GO annotations – evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and 3) GO Causal Activity Models (GO-CAMs) – mechanistic models of molecular “pathways” (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised and updated in response to newly published discoveries, and receives extensive QA checks, reviews and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, as well as guidance on how users can best make use of the data we provide. We conclude with future directions for the project.
ZFIN, the Zebrafish Model Organism Database, http://zfin.org, serves as the central repository and web-based resource for zebrafish genetic, genomic, phenotypic and developmental data. ZFIN manually curates comprehensive data for zebrafish genes, phenotypes, genotypes, gene expression, antibodies, anatomical structures and publications. A wide-ranging collection of web-based search forms and tools facilitates access to integrated views of these data promoting analysis and scientific discovery. Data represented in ZFIN are derived from three primary sources: curation of zebrafish publications, individual research laboratories and collaborations with bioinformatics organizations. Data formats include text, images and graphical representations. ZFIN is a dynamic resource with data added daily as part of our ongoing curation process. Software updates are frequent. Here, we describe recent additions to ZFIN including (i) enhanced access to images, (ii) genomic features, (iii) genome browser, (iv) transcripts, (v) antibodies and (vi) a community wiki for protocols and antibodies.
ZFIN, the Zebrafish Model Organism Database (http://zfin.org), is the central resource for zebrafish genetic, genomic, phenotypic and developmental data. ZFIN curators manually curate and integrate comprehensive data involving zebrafish genes, mutants, transgenics, phenotypes, genotypes, gene expressions, morpholinos, antibodies, anatomical structures and publications. Integrated views of these data, as well as data gathered through collaborations and data exchanges, are provided through a wide selection of web-based search forms. Among the vertebrate model organisms, zebrafish are uniquely well suited for rapid and targeted generation of mutant lines. The recent rapid production of mutants and transgenic zebrafish is making management of data associated with these resources particularly important to the research community. Here, we describe recent enhancements to ZFIN aimed at improving our support for mutant and transgenic lines, including (i) enhanced mutant/transgenic search functionality; (ii) more expressive phenotype curation methods; (iii) new downloads files and archival data access; (iv) incorporation of new data loads from laboratories undertaking large-scale generation of mutant or transgenic lines and (v) new GBrowse tracks for transgenic insertions, genes with antibodies and morpholinos.
The Zebrafish Information Network (ZFIN, http://zfin.org), the model organism database for zebrafish, provides the central location for curated zebrafish genetic, genomic and developmental data. Extensive data integration of mutant phenotypes, genes, expression patterns, sequences, genetic markers, morpholinos, map positions, publications and community resources facilitates the use of the zebrafish as a model for studying gene function, development, behavior and disease. Access to ZFIN data is provided via web-based query forms and through bulk data files. ZFIN is the definitive source for zebrafish gene and allele nomenclature, the zebrafish anatomical ontology (AO) and for zebrafish gene ontology (GO) annotations. ZFIN plays an active role in the development of cross-species ontologies such as the phenotypic quality ontology (PATO) and the gene ontology (GO). Recent enhancements to ZFIN include (i) a new home page and navigation bar, (ii) expanded support for genotypes and phenotypes, (iii) comprehensive phenotype annotations based on anatomical, phenotypic quality and gene ontologies, (iv) a BLAST server tightly integrated with the ZFIN database via ZFIN-specific datasets, (v) a global site search and (vi) help with hands-on resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.