Neurovascular coupling, cerebrovascular remodeling and hemodynamic changes are critical to brain function, and dysregulated in neuropathologies such as brain tumors. Interrogating these phenomena in freely behaving animals requires a portable microscope with multiple optical contrast mechanisms. Therefore, we developed a miniaturized microscope with: a fluorescence (FL) channel for imaging neural activity (e.g., GCaMP) or fluorescent cancer cells (e.g., 9L-GFP); an intrinsic optical signal (IOS) channel for imaging hemoglobin absorption (i.e., cerebral blood volume); and a laser speckle contrast (LSC) channel for imaging perfusion (i.e., cerebral blood flow). Following extensive validation, we demonstrate the microscope’s capabilities via experiments in unanesthetized murine brains that include: (i) multi-contrast imaging of neurovascular changes following auditory stimulation; (ii) wide-area tonotopic mapping; (iii) EEG-synchronized imaging during anesthesia recovery; and (iv) microvascular connectivity mapping over the life-cycle of a brain tumor. This affordable, flexible, plug-and-play microscope heralds a new era in functional imaging of freely behaving animals.
Translational vasculature-specific MRI biomarkers were used to measure the effects of a novel anti-angiogenic biomimetic peptide in an orthotopic MDA-MB-231 human triple-negative breast cancer model at an early growth stage. In vivo diffusion-weighted and steady-state susceptibility contrast (SSC) MRI was performed pre-treatment and 2 weeks post-treatment in tumor volume-matched treatment and control groups (n = 5/group). Treatment response was measured by changes in tumor volume; baseline transverse relaxation time (T2); apparent diffusion coefficient (ADC); and SSC-MRI metrics of blood volume, vessel size, and vessel density. These vasculature-specific SSC-MRI biomarkers were compared to the more conventional, non-vascular biomarkers (tumor growth, ADC, and T2) in terms of their sensitivity to anti-angiogenic treatment response. After 2 weeks of peptide treatment, tumor growth inhibition was evident but not yet significant, and the changes in ADC or T2 were not significantly different between treated and control groups. In contrast, the vascular MRI biomarkers revealed a significant anti-angiogenic response to the peptide after 2 weeks—blood volume and vessel size decreased, and vessel density increased in treated tumors; the opposite was seen in control tumors. The MRI results were validated with histology—H&E staining showed no difference in tumor viability between groups, while peptide-treated tumors exhibited decreased vascularity. These results indicate that translational SSC-MRI biomarkers are able to detect the differential effects of anti-angiogenic therapy on the tumor vasculature before significant tumor growth inhibition or changes in tumor viability.
Abnormal tumor hemodynamics are a critical determinant of a tumor's microenvironment (tMe), and profoundly affect drug delivery, therapeutic efficacy and the emergence of drug and radio-resistance. Since multiple hemodynamic variables can simultaneously exhibit transient and spatiotemporally heterogeneous behavior, there is an exigent need for analysis tools that employ multiple variables to characterize the anomalous hemodynamics within the tMe. to address this, we developed a new toolkit called HemoSYS for quantifying the hemodynamic landscape within angiogenic microenvironments. it employs multivariable time-series data such as in vivo tumor blood flow (BF), blood volume (BV) and intravascular oxygen saturation (Hb sat ) acquired concurrently using a wide-field multicontrast optical imaging system. the HemoSYS toolkit consists of propagation, clustering, coupling, perturbation and fourier analysis modules. We demonstrate the utility of each module for characterizing the in vivo hemodynamic landscape of an orthotropic breast cancer model. With HemoSYS, we successfully described: (i) the propagation dynamics of acute hypoxia; (ii) the initiation and dissolution of distinct hemodynamic niches; (iii) tumor blood flow regulation via local vasomotion; (iv) the hemodynamic response to a systemic perturbation with carbogen gas; and (v) frequency domain analysis of hemodynamic heterogeneity in the tMe. HemoSYS (freely downloadable via the internet) enables vascular phenotyping from multicontrast in vivo optical imaging data. its modular design also enables characterization of non-tumor hemodynamics (e.g. brain), other preclinical disease models (e.g. stroke), vascular-targeted therapeutics, and hemodynamic data from other imaging modalities (e.g. MRi).
Tissue-engineered scaffolds are a powerful means of healing craniofacial bone defects arising from trauma or disease. Murine models of critical-sized bone defects are especially useful in understanding the role of microenvironmental factors such as vascularization on bone regeneration. Here, we demonstrate the capability of a novel multimodality imaging platform capable of acquiring in vivo images of microvascular architecture, microvascular blood flow, and tracer/cell tracking via intrinsic optical signaling (IOS), laser speckle contrast (LSC), and fluorescence (FL) imaging, respectively, in a critical-sized calvarial defect model. Defects that were 4 mm in diameter were made in the calvarial regions of mice followed by the implantation of osteoconductive scaffolds loaded with human adipose-derived stem cells embedded in fibrin gel. Using IOS imaging, we were able to visualize microvascular angiogenesis at the graft site and extracted morphological information such as vessel radius, length, and tortuosity two weeks after scaffold implantation. FL imaging allowed us to assess functional characteristics of the angiogenic vessel bed, such as time-to-peak of a fluorescent tracer, and also allowed us to track the distribution of fluorescently tagged human umbilical vein endothelial cells. Finally, we used LSC to characterize the in vivo hemodynamic response and maturity of the remodeled microvessels in the scaffold microenvironment. In this study, we provide a methodical framework for imaging tissue-engineered scaffolds, processing the images to extract key microenvironmental parameters, and visualizing these data in a manner that enables the characterization of the vascular phenotype and its effect on bone regeneration. Such multimodality imaging platforms can inform optimization and design of tissue-engineered scaffolds and elucidate the factors that promote enhanced vascularization and bone formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.