Amyloid is associated with debilitating human ailments including Alzheimer's and prion diseases. Biochemical, biophysical, and imaging analyses revealed that fibers produced by Escherichia coli called curli were amyloid. The CsgA curlin subunit, purified in the absence of the CsgB nucleator, adopted a soluble, unstructured form that upon prolonged incubation assembled into fibers that were indistinguishable from curli. In vivo, curli biogenesis was dependent on the nucleation-precipitation machinery requiring the CsgE and CsgF chaperone-like and nucleator proteins, respectively. Unlike eukaryotic amyloid formation, curli biogenesis is a productive pathway requiring a specific assembly machinery.
Helicobacter pylori is associated with development of gastritis, gastric ulcers, and adenocarcinomas in humans. The Lewis(b) (Le(b)) blood group antigen mediates H. pylori attachment to human gastric mucosa. Soluble glycoproteins presenting the Leb antigen or antibodies to the Leb antigen inhibited bacterial binding. Gastric tissue lacking Leb expression did not bind H. pylori. Bacteria did not bind to Leb antigen substituted with a terminal GalNAc alpha 1-3 residue (blood group A determinant), suggesting that the availability of H. pylori receptors might be reduced in individuals of blood group A and B phenotypes, as compared with blood group O individuals.
Two divergently transcribed operons in Escherichia coli required for the expression of fibronectin- and Congo red-binding curli polymers were identified and characterized by transposon mutagenesis, sequencing and transcriptional analyses, as well as for their ability to produce the curli subunit protein. The csgBA operon encodes CsgA, the major subunit protein of the fibre, and CsgB, a protein with sequence homology to CsgA. A non-polar csgB mutant is unaffected in its production of CsgA, but the subunit protein is not assembled into insoluble fibre polymers. A third open reading frame, orfC, positioned downstream of csgA may affect some functional property of curli since an insertion in this putative gene abolishes the autoagglutinating ability typical of curliated cells without affecting the production of the fibre. The promoter for the oppositely transcribed csgDEFG operon was identified by primer extension and shown, like the csgBA promoter, to be dependent upon the alternate stationary phase-specific sigma factor sigma s in wild-type cells, but not in mutants lacking the nucleoid associated protein H-NS. Insertions in csgD abolish completely trancription from the csgBA promoter. Therefore, any regulatory effect on the csgBA promoter might be secondary to events controlling the csgDEFG promoter and/or activation of CsgD. Insertions in csgE, csgF and csgG abolish curli formation but allow CsgA expression suggesting that one or more of these gene products are involved in secretion/assembly of the CsgA subunit protein. No amino acid sequence homologies were found between the CsgE, CsgF and CsgG proteins and secretion/assembly proteins for other known bacterial fibres, suggesting that the formation of curli follows a novel pathway.
SummaryA colony morphology type is described in which cells of Salmonella typhimurium form a rigid multicellular network with expression of thin aggregative fimbriae that mediate tight intercellular bonds. Surface translocation of cells on plates and adherence to glass and polystyrene surfaces in biofilm assays are further characteristics of the morphotype. This morphotype (rdar) is normally expressed only at low temperature. However, in two unrelated S. typhimurium strains, spontaneous mutants were found forming rdar colonies independent of temperature. Allelic replacement proved a single point mutation in the promoter region of PagfD in each of the two mutants to be responsible for the constitutive phenotype of a multicellular behaviour. Transcription levels of the two divergently transcribed agf operons required for biogenesis of thin aggregative fimbriae by Northern blot analysis with gene probes for agfA and agfD as well as expression levels of AgfA by Western blotting were compared in the wild type, the constitutive mutants and their respective ompR ¹ and rpoS ¹ derivatives. In the wild type the rdar morphotype and expression of thin aggregative fimbriae are restricted to low temperature on plates containing rich medium of low osmolarity, but biogenesis of thin aggregative fimbriae occurs upon iron starvation at 37ЊC. In the upregulated mutants biogenesis of thin aggregative fimbriae is only abolished at high osmolarity at 37ЊC and in the exponential phase in broth culture. Control of expression of thin aggregative fimbriae and rdar morphology takes place at the transcriptional level at the agfD promoter. A functional ompR allele is required, however an rpoS mutation abolishes transcription only in the wild type, but has no influence on expression of thin aggregative fimbriae in the constitutive mutants.
A mechanism for bacteria to monitor the status of their vital cell wall peptidoglycan is suggested by the convergence of two phenomena: peptidoglycan recycling and beta‐lactamase induction. ampG and ampD, genes essential for beta‐lactamase regulation, are here shown to be required for recycling as well. Cells lacking either AmpG or AmpD lose up to 40% of their peptidoglycan per generation, whereas Escherichia coli normally suffers minimal losses and instead recycles 40 or 50% of the tripeptide, L‐alanyl‐D‐glutamyl‐meso‐diaminopimelic acid, from its peptidoglycan each generation. The ampG mutant releases peptidoglycan‐derived material into the medium. In contrast, the ampD mutant accumulates a novel cell wall muropeptide, 1,6‐anhydro N‐acetylmuramyl‐L‐alanyl‐D‐glutamyl‐meso‐diaminopimelic acid (anhMurNAc‐tripeptide), in its cytoplasm. This work suggests that AmpG is the permease for a large muropeptide and AmpD is a novel cytosolic N‐acetylmuramyl‐L‐alanine amidase that cleaves anhMurNAc‐tripeptide to release tripeptide, which is then recycled. These results also suggest that the phenomenon of beta‐lactamase induction is regulated by the level of muropeptide(s) in the cytoplasm, since an ampD mutation that results in beta‐lactamase expression even in the absence of a beta‐lactamase inducer coincides with accumulation of anhMurNAc‐tripeptide. The transcriptional regulator AmpR is presumably converted into an activator for beta‐lactamase production by sensing the higher level of muropeptide(s). This may be an example of a general mechanism for signaling the progress of external events such as cell wall maturation, cell division or cell wall damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.