The geological inventory of the Variscan Bohemian Massif can be summarized as a result of Early Devonian subduction of the Saxothuringian ocean of unknown size underneath the eastern continental plate represented by the present-day Teplá-Barrandian and Moldanubian domains. During mid-Devonian, the Saxothuringian passive margin sequences and relics of Ordovician oceanic crust have been obducted over the Saxothuringian basement in conjunction with extrusion of the Teplá-Barrandian middle crust along the socalled Teplá suture zone. This event was connected with the development of the magmatic arc further east, together with a fore-arc basin on the Teplá-Barrandian crust. The back-arc region -the future Moldanubian zone -was affected by lithospheric thinning which marginally affected also the eastern Brunia continental crust. The subduction stage was followed by a collisional event caused by the arrival of the Saxothuringian continental crust that was associated with crustal thickening and the development of the orogenic root system in the magmatic arc and back-arc region of the orogen. The thickening was associated with depression of the Moho and the flux of the Saxothuringian felsic crust into the root area. Originally subhorizontal anisotropy in the root zone was subsequently folded by crustal-scale cusp folds in front of the Brunia backstop. During the Visean, the Brunia continent indented the thickened crustal root, resulting in the root's massive shortening causing vertical extrusion of the orogenic lower crust, which changed to a horizontal viscous channel flow of extruded lower crustal material in the mid-to supra-crustal levels. Hot orogenic lower crustal rocks were extruded: (1) in a narrow channel parallel to the former Teplá suture surface; (2) in the central part of the root zone in the form of large scale antiformal structure; and (3) in form of hot fold nappe over the Brunia promontory, where it produced Barrovian metamorphism and subsequent imbrications of its upper part. The extruded deeper parts of the orogenic root reached the surface, which soon thereafter resulted in the sedimentation of lower-crustal rocks pebbles in the thick foreland Culm basin on the stable part of the Brunia continent. Finally, during the Westfalian, the foreland Culm wedge was involved into imbricated nappe stack together with basement and orogenic channel flow nappes. To cite this article: K. Schulmann et al., C. R. Geoscience 341 (2009). # 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences. RésuméConvergence paléozoïque de type Andin dans le Massif de Bohême. Le Massif varisque de Bohême est le résultat de la subduction, au Dévonien supérieur, de l'océan Saxothuringien sous la plaque continentale représentée à l'est par les zones actuelles
A detailed field study reveals a gradual transition from high-grade solid-state banded orthogneiss via stromatic migmatite and schlieren migmatite to irregular, foliation-parallel bodies of nebulitic migmatite within the eastern part of the Gfo¨hl Unit (Moldanubian domain, Bohemian Massif). The orthogneiss to nebulitic migmatite sequence is characterized by progressive destruction of well-equilibrated banded microstructure by crystallization of new interstitial phases (Kfs, Pl and Qtz) along feldspar boundaries and by resorption of relict feldspar and biotite. The grain size of all felsic phases decreases continuously, whereas the population density of new phases increases. The new phases preferentially nucleate along high-energy like-like boundaries causing the development of a regular distribution of individual phases. This evolutionary trend is accompanied by a decrease in grain shape preferred orientation of all felsic phases. To explain these data, a new petrogenetic model is proposed for the origin of felsic migmatites by melt infiltration from an external source into banded orthogneiss during deformation. In this model, infiltrating melt passes pervasively along grain boundaries through the whole-rock volume and changes completely its macro-and microscopic appearance. It is suggested that the individual migmatite types represent different degrees of equilibration between the host rock and migrating melt during exhumation. The melt topology mimicked by feldspar in banded orthogneiss forms elongate pockets oriented at a high angle to the compositional banding, indicating that the melt distribution was controlled by the deformation of the solid framework. The microstructure exhibits features compatible with a combination of dislocation creep and grain boundary sliding deformation mechanisms. The migmatite microstructures developed by granular flow accompanied by melt-enhanced diffusion and/or melt flow. However, an AMS study and quartz microfabrics suggest that the amount of melt present did not exceed a critical threshold during the deformation to allow free movements of grains.
[1] High-grade orthogneisses from granulite-bearing lower crustal unit show extreme finite strains of both K-feldspar and plagioclase with respect to weakly deformed quartz aggregates. K-feldspar aggregate in the most intensely deformed sample shows interstitial grains of quartz and albite, which also mark some intragranular fractures within K-feldspar grains. Both interstitial grains and fractures are oriented mostly perpendicular to the sample stretching lineation. Quartz and albite grains within K-feldspar bands are interpreted as crystallized from interstitial melt and the petrology study shows that the melt was produced by a metamorphic reaction in plagioclase-mica bands. Thermodynamic Perple_X modeling shows that melt volume increase was negligible and melt amount was too small to generate considerable melt overpressure for calculated PT conditions. It is therefore suggested that dilation of K-feldspar aggregates and fracturing of its grains represent a final creep failure state, which resulted from the cavitation process accompanying grain boundary sliding controlled diffusion creep. The consequence of cavitation-driven dilation of K-feldspar aggregates is the local underpressure resulting in infiltration of melt from plagioclase bands. Analogy with metallurgy experiments shows that the cavitation process, exclusively developed in cryptoperthitic K-feldspar, can be attributed to its lower purity compared to more pure plagioclase. Contrasting rheological behavior of feldspars with respect to quartz prior to fracturing is attributed to different deformation mechanisms. Feldspars appear weaker due to grain boundary sliding accommodated by coupled melt-enhanced diffusion creep along grain boundaries and dislocation creep within grains, in contrast to quartz deforming via grain boundary migration accommodated dislocation creep.Citation: Závada, P., K. Schulmann, J. Konopásek, S. Ulrich, and O. Lexa (2007), Extreme ductility of feldspar aggregates-Meltenhanced grain boundary sliding and creep failure: Rheological implications for felsic lower crust,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.