Modeling vehicle-pedestrian interactions in the road environment is essential to develop pedestrian detection and pedestrian crash avoidance systems. In this paper, one novel approach is proposed to estimate the vehicle-pedestrian encountering risk in the road environment based on a large scale naturalistic driving data collection. Considering the difficulty to record actual pedestrian crashes in the naturalistic data collection, the encountering risk is estimated by the chances for driver to meet with pedestrian in the roadway as well as the chances for the driver and pedestrian to get into a potential conflict. Effects of different scenarios consisting of road conditions, pedestrian behaviors, and pedestrian numbers on the risk levels are also evaluated, and significant results are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.