Smoking is a leading cause of preventable death, causing approximately five million premature deaths world-wide each year 1, 2 . Evidence for genetic influence on smoking behaviour and nicotine dependence (ND) 3-8 has prompted a search for susceptibility genes. Furthermore, assessing the impact of sequence variants on smoking-related diseases is important for public health reasons 9, 10 . Smoking is the major risk factor for lung cancer (LC) [11][12][13][14] , and one of the main risk factors for peripheral arterial disease (PAD) [15][16][17] . We have identified a common variant in the nicotinic acetylcholine receptor gene cluster on chromosome 15q24 with an effect on smoking quantity, ND and the risk of two smoking-related diseases in populations of European descent. The variant has an effect on the number of cigarettes smoked per day in 15,771 smokers (P=6×10 −20 ). The same variant associated with ND in a previous genome-wide association study using low quantity smokers as controls (OR=1.3, P=1×10 −3 ) 18,19 , and with a similar approach we observe a highly significant association with ND (OR =1.40, P=7×10 −15 ). Comparison of LC (N=1,024) and PAD (N= 2,738) cases with about 30,000 population controls each showed that the variant confers risk of LC (OR=1.31, P=1.5×10 −8 ) and PAD (OR=1.19, P=1.4×10 −7 ). The findings highlight the role of nicotine addiction in the pathogenesis of other serious diseases and provide a case study of the role of active gene-environment correlation 20 in the pathogenesis of disease.To perform a genome-wide association (GWA) study of smoking quantity (SQ), we utilised questionnaire data limited to basic questions on smoking behaviour that were available for a large number of lifetime smokers. The GWA scan comprises 10,995 Icelandic smokers who Reprints and permissions information is available at www.nature.com/reprints.
NATURE GENETICS VOLUME 36 | NUMBER 3 | MARCH 2004 233Cardiovascular diseases (CVD) are the leading causes of death and disability in the developed world 1 , with an increasing prevalence due to the aging of the population and the obesity epidemic. More than 1 million deaths in the US alone were caused by myocardial infarction and stroke in 2003 (ref. 2). Some of the processes underlying myocardial infarction are now understood: it is generally attributed to atherosclerosis with arterial wall inflammation that ultimately leads to plaque rupture, fissure or erosion 3,4 . This process is known to involve diapedesis of monocytes across the endothelial barrier; activation of neutrophils, macrophage cells and platelets; and release of a variety of cytokines and chemokines 5,6 , but the genetic basis of the process has not yet been deciphered. Two different approaches have been used to search for genes associated with myocardial infarction. SNPs in candidate genes have been tested for association and have, in general, not been replicated or confer only a modest risk of myocardial infarction. Case-control association studies have identified several proinflammatory genes with variants that are associated with either an increased risk of myocardial infarction or a protective effect 7-9 . Four genome-wide scans in families with myocardial infarction have yielded several loci with formidable linkage peaks, but the gene(s) underlying these loci have not yet been identified [10][11][12][13][14] . In addition, one large pedigree study identified a deletion mutation of a transcription factor gene, MEF2A, with autosomal dominant transmission 14 . This is an interesting cause of myocardial infarction, but the prevalence of this or other mutations in MEF2A outside this family remains to be determined.Here we report a genome-wide scan of 296 multiplex Icelandic families including 713 individuals with myocardial infarction. Through suggestive linkage to a locus on chromosome 13q12-13, we identified the gene (ALOX5AP) encoding FLAP and found that a four-SNP haplotype in the gene confers a nearly two times greater risk of myocardial infarction and stroke. FLAP is a regulator 15 of a crucial pathway in the genesis of leukotriene inflammatory mediators, which are implicated in atherosclerosis both in a mouse model 16 and in human studies 17,18 . Males had the strongest association to the at-risk haplotype, and male carriers of the at-risk haplotype also had significantly greater production of leukotriene-B4 (LTB4), supporting the idea that proinflammatory activity has a role in the pathogenesis of myocardial infarction. We confirmed the association of ALOX5AP with myocardial infarction in an independent cohort of British individuals with another haplotype. These results indicate that ALOX5AP is the first specific gene isolated that confers substantial population-attributable risk (PAR) of the complex traits of both myocardial infarction and stroke. We mapped a gene predisposing to myocardial infarction to a locus on chromosome 13q12-13....
Smoking is a risk factor for most of the diseases leading in mortality1. We conducted genome-wide association (GWA) meta-analyses of smoking data within the ENGAGE consortium to search for common alleles associating with the number of cigarettes smoked per day (CPD) in smokers (N=31,266) and smoking initiation (N=46,481). We tested selected SNPs in a second stage (N=45,691 smokers), and assessed some in a third sample (N=9,040). Variants in three genomic regions associated with CPD (P< 5·10−8), including previously identified SNPs at 15q25 represented by rs1051730-A (0.80 CPD,P=2.4·10−69), and SNPs at 19q13 and 8p11, represented by rs4105144-C (0.39 CPD, P=2.2·10−12) and rs6474412-T (0.29 CPD,P= 1.4·10−8), respectively. Among the genes at the two novel loci, are genes encoding nicotine-metabolizing enzymes (CYP2A6 and CYP2B6), and nicotinic acetylcholine receptor subunits (CHRNB3 and CHRNA6) highlighted in previous studies of nicotine dependence2-3. Nominal associations with lung cancer were observed at both 8p11 (rs6474412-T,OR=1.09,P=0.04) and 19q13 (rs4105144-C,OR=1.12,P=0.0006).
Recently, two common sequence variants on 9p21, tagged by rs10757278-G and rs10811661-T, were reported to be associated with coronary artery disease (CAD) and type 2 diabetes (T2D), respectively. We proceeded to further investigate the contributions of these variants to arterial diseases and T2D. Here we report that rs10757278-G is associated with, in addition to CAD, abdominal aortic aneurysm (AAA; odds ratio (OR) = 1.31, P = 1.2 x 10(-12)) and intracranial aneurysm (OR = 1.29, P = 2.5 x 10(-6)), but not with T2D. This variant is the first to be described that affects the risk of AAA and intracranial aneurysm in many populations. The association of rs10811661-T to T2D replicates in our samples, but the variant does not associate with any of the five arterial diseases examined. These findings extend our insight into the role of the sequence variant tagged by rs10757278-G and show that it is not confined to atherosclerotic diseases.
Variants of the gene ALOX5AP (also known as FLAP) encoding arachidonate 5-lipoxygenase activating protein are known to be associated with risk of myocardial infarction. Here we show that a haplotype (HapK) spanning the LTA4H gene encoding leukotriene A4 hydrolase, a protein in the same biochemical pathway as ALOX5AP, confers modest risk of myocardial infarction in an Icelandic cohort. Measurements of leukotriene B4 (LTB4) production suggest that this risk is mediated through upregulation of the leukotriene pathway. Three cohorts from the United States also show that HapK confers a modest relative risk (1.16) in European Americans, but it confers a threefold larger risk in African Americans. About 27% of the European American controls carried at least one copy of HapK, as compared with only 6% of African American controls. Our analyses indicate that HapK is very rare in Africa and that its occurrence in African Americans is due to European admixture. Interactions with other genetic or environmental risk factors that are more common in African Americans are likely to account for the greater relative risk conferred by HapK in this group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.