Because hypoperfusion of brain tissue precedes atrophy in dementia, the detection of dementia may be advanced by the use of perfusion information. Such information can be obtained noninvasively with arterial spin labeling (ASL), a relatively new MR technique quantifying cerebral blood flow (CBF). Using ASL and structural MRI, we evaluated diagnostic classification in 32 prospectively included presenile early stage dementia patients and 32 healthy controls. Patients were suspected of Alzheimer's disease (AD) or frontotemporal dementia. Classification was based on CBF as perfusion marker, gray matter (GM) volume as atrophy marker, and their combination. These markers were each examined using six feature extraction methods: a voxel-wise method and a region of interest (ROI)-wise approach using five ROI-sets in the GM. These ROI-sets ranged in number from 72 brain regions to a single ROI for the entire supratentorial brain. Classification was performed with a linear support vector machine classifier. For validation of the classification method on the basis of GM features, a reference dataset from the AD Neuroimaging Initiative database was used consisting of AD patients and healthy controls. In our early stage dementia population, the voxelwise feature-extraction approach achieved more accurate results (area under the curve (AUC) range = 86 - 91%) than all other approaches (AUC = 57 - 84%). Used in isolation, CBF quantified with ASL was a good diagnostic marker for dementia. However, our findings indicated only little added diagnostic value when combining ASL with the structural MRI data (AUC = 91%), which did not significantly improve over accuracy of structural MRI atrophy marker by itself.
ObjectivesTo investigate the added diagnostic value of arterial spin labelling (ASL) and diffusion tensor imaging (DTI) to structural MRI for computer-aided classification of Alzheimer's disease (AD), frontotemporal dementia (FTD), and controls.MethodsThis retrospective study used MRI data from 24 early-onset AD and 33 early-onset FTD patients and 34 controls (CN). Classification was based on voxel-wise feature maps derived from structural MRI, ASL, and DTI. Support vector machines (SVMs) were trained to classify AD versus CN (AD-CN), FTD-CN, AD-FTD, and AD-FTD-CN (multi-class). Classification performance was assessed by the area under the receiver-operating-characteristic curve (AUC) and accuracy. Using SVM significance maps, we analysed contributions of brain regions.ResultsCombining ASL and DTI with structural MRI resulted in higher classification performance for differential diagnosis of AD and FTD (AUC = 84%; p = 0.05) than using structural MRI by itself (AUC = 72%). The performance of ASL and DTI themselves did not improve over structural MRI. The classifications were driven by different brain regions for ASL and DTI than for structural MRI, suggesting complementary information.ConclusionsASL and DTI are promising additions to structural MRI for classification of early-onset AD, early-onset FTD, and controls, and may improve the computer-aided differential diagnosis on a single-subject level.Key points• Multiparametric MRI is promising for computer-aided diagnosis of early-onset AD and FTD. • Diagnosis is driven by different brain regions when using different MRI methods. • Combining structural MRI, ASL, and DTI may improve differential diagnosis of dementia. Electronic supplementary materialThe online version of this article (doi:10.1007/s00330-016-4691-x) contains supplementary material, which is available to authorized users.
ObjectiveTo investigate arterial spin labeling (ASL)-MRI for the early diagnosis of and differentiation between the two most common types of presenile dementia: Alzheimer’s disease (AD) and frontotemporal dementia (FTD), and for distinguishing age-related from pathological perfusion changes.MethodsThirteen AD and 19 FTD patients, and 25 age-matched older and 22 younger controls underwent 3D pseudo-continuous ASL-MRI at 3 T. Gray matter (GM) volume and cerebral blood flow (CBF), corrected for partial volume effects, were quantified in the entire supratentorial cortex and in 10 GM regions. Sensitivity, specificity and diagnostic performance were evaluated in regions showing significant CBF differences between patient groups or between patients and older controls.ResultsAD compared with FTD patients had hypoperfusion in the posterior cingulate cortex, differentiating these with a diagnostic performance of 74 %. Compared to older controls, FTD patients showed hypoperfusion in the anterior cingulate cortex, whereas AD patients showed a more widespread regional hypoperfusion as well as atrophy. Regional atrophy was not different between AD and FTD. Diagnostic performance of ASL to differentiate AD or FTD from controls was good (78-85 %). Older controls showed global hypoperfusion compared to young controls.ConclusionASL-MRI contributes to early diagnosis of and differentiation between presenile AD and FTD.Key Points• ASL-MRI facilitates differentiation of early Alzheimer’s disease and frontotemporal dementia.• Posterior cingulate perfusion is lower in Alzheimer’s disease than frontotemporal dementia.• Compared to controls, Alzheimer’s disease patients show hypoperfusion in multiple regions.• Compared to controls, frontotemporal dementia patients show focal anterior cingulate hypoperfusion.• Global decreased perfusion in older adults differs from hypoperfusion in dementia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.