Hydrocephalus cases were regularly described by Hippocrates, Galen, and early and medieval Arabian physicians, who believed that this disease was caused by an extracerebral accumulation of water. Operative procedures used in ancient times are neither proven by skull findings today nor clearly reported in the literature. Evacuation of superficial intracranial fluid in hydrocephalic children was first described in detail in the tenth century by Abulkassim Al Zahrawi. In 1744, LeCat published findings on a ventricular puncture. Effective therapy required aseptic surgery as well as pathophysiological knowledge--both unavailable before the late nineteenth century. In 1881, a few years after the landmark study of Key and Retzius, Wernicke inaugurated sterile ventricular puncture and external CSF drainage. These were followed in 1891 by serial lumbar punctures (Quincke) and, in 1893, by the first permanent ventriculo-subarachnoid-subgaleal shunt (Mikulicz), which was simultaneously a ventriculostomy and a drainage into an extrathecal low pressure compartment. Between 1898 and 1925, lumboperitoneal, and ventriculoperitoneal, -venous, -pleural, and -ureteral shunts were invented, but these had a high failure rate due to insufficient implant materials in most cases. Ventriculostomy without implants (Anton 1908), with implants, and plexus coagulation initially had a very high operative mortality and were seldom successful in the long term, but gradually improved over the next decades. In 1949, Nulsen and Spitz implanted a shunt successfully into the caval vein with a ball valve. Between 1955 and 1960, four independent groups invented distal slit, proximal slit, and diaphragm valves almost simultaneously. Around 1960, the combined invention of artificial valves and silicone led to a worldwide therapeutic breakthrough. After the first generation of simple differential pressure valves, which are unable to drain physiologically in all body positions, a second generation of adjustable, autoregulating, antisiphon, and gravitational valves was developed, but their use is limited due to economical restrictions and still unsolved technical problems. At the moment, at least 127 different designs are available, with historical models and prototypes bringing the number to 190 valves, but most of these are only clones. In the 1990s, there has been a renaissance of endoscopic ventriculostomy, which is widely accepted as the method of first choice in adult patients with aquired or late-onset, occlusive hydrocephalus; in other cases the preference remains controversial. Both new methods, the second generation of valves as well as ventriculostomy, show massive deficits in evaluation. There is only one randomized study and no long-term evaluation.
Postoperative vaccination with virus-modified autologous tumor cells seems to be feasible and safe and to improve the prognosis of patients with glioblastomas. This could be substantiated by the observed antitumor immune response.
The extracellular matrix protein tenascin-C is expressed in processes like embryogenesis and wound healing and in neoplasia. Tenascin-C expression in gliomas has been described previously; however, the relation to clinical data remains inconsistent. Generally, analysis of tenascin-C function is difficult due to different alternatively spliced isoforms. Our studies focus on changes in tenascin-C expression in human gliomas, correlating these changes with tumor progression and elucidating the functional role of the glioma cell-specific tenascin-C isoform pool. Eighty-six glioma tissues of different World Health Organization (WHO) grades were analyzed immunohistochemically for tenascin-C expression. The influence of the specific tenascin-C isoforms produced by glioblastoma cells on proliferation and migration was examined in vitro using blocking antibodies recognizing all isoforms. In general, tenascin-C expression increased with tumor malignancy. Perivascular staining of tenascin-C around tumor-supplying blood vessels was observed in all glioblastoma tissues, whereas in WHO II and III gliomas, perivascular tenascin-C staining appeared less frequently. The appearance of perivascular tenascin-C correlated significantly with a shorter disease-free time. Analysis of proliferation and migration in the presence of blocking antibodies revealed an inhibition of proliferation by around 30% in all 3 glioblastoma cell cultures, as well as a decrease in migration of 30.6 -46.7%. Thus we conclude that the endogenous pool of tenascin-C isoforms in gliomas supports both tumor cell proliferation and tumor cell migration. In addition, our data on the perivascular staining of tenascin-C in WHO II and III gliomas and its correlation with a shorter disease-free time suggest that tenascin-C may be a new and potent prognostic marker for an earlier tumor recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.