The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (http://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14748. G protein‐coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
The chemotactic factors directing interneuron migration during cerebrocortical development are essentially unknown. Here we identify the CXC chemokine receptor 4 (CXCR4) in interneuron precursors migrating from the basal forebrain to the neocortex and demonstrate that stromal cell-derived factor-1 (SDF-1) is a potent chemoattractant for isolated striatal precursors. In addition, we show that CXCR4 is present in early generated Cajal-Retzius cells of the cortical marginal zone. In mice with a null mutation in CXCR4 or SDF-1, interneurons were severely underrepresented in the superficial layers and ectopically placed in the deep layers of the neocortex. In contrast, the submeningeal positioning of Cajal-Retzius cells was unaffected. Thus, our findings suggest that SDF-1, which is highly expressed in the embryonic leptomeninx, selectively regulates migration and layer-specific integration of CXCR4-expressing interneurons during neocortical development.
The chemoattractant stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) are key modulators of immune function. In the developing brain, SDF-1 is crucial for neuronal guidance; however, cerebral functions of SDF-1/CXCR4 in adulthood are unclear. Here, we examine the cellular expression of SDF-1 isoforms and CXCR4 in the brain of mice receiving systemic lipopolysaccharide (LPS) or permanent focal cerebral ischemia. CXCR4 mRNA was constitutively expressed in cortical and hippocampal neurons and ependymal cells. Hippocampal neurons targeted the CXCR4 receptor to their somatodendritic and axonal compartments. In cortex and hippocampus, CXCR4-expressing neurons exhibited an overlapping distribution with neurons expressing SDF-1 transcripts. Although neurons synthesized SDF-1alpha mRNA, the SDF-1beta isoform was selectively expressed by endothelial cells of cerebral microvessels. LPS stimulation dramatically decreased endothelial SDF-1beta mRNA expression throughout the forebrain but did not affect neuronal SDF-1alpha. After focal cerebral ischemia, SDF-1beta expression was selectively increased in endothelial cells of penumbral blood vessels and decreased in endothelial cells of nonlesioned brain areas. In the penumbra, SDF-1beta upregulation was associated with a concomitant infiltration of CXCR4-expressing peripheral blood cells, including macrophages. Neuronal SDF-1alpha was transiently downregulated and neuronal CXCR4 was transiently upregulated in the nonlesioned cerebral cortex in response to ischemia. Although endothelial SDF-1beta may control cerebral infiltration of CXCR4-carrying leukocytes during cerebral ischemia, the neuronal SDF-1alpha/CXCR4 system may contribute to ischemia-induced neuronal plasticity. Thus, the isoform-specific regulation of SDF-1 expression modulates neurotransmission and cerebral infiltration via distinct CXCR4-dependent pathways.
Biased agonism at G protein–coupled receptors describes the phenomenon whereby some drugs can activate some downstream signaling activities to the relative exclusion of others. Descriptions of biased agonism focusing on the differential engagement of G proteins versus β-arrestins are commonly limited by the small response windows obtained in pathways that are not amplified or are less effectively coupled to receptor engagement, such as β-arrestin recruitment. At the μ-opioid receptor (MOR), G protein–biased ligands have been proposed to induce less constipation and respiratory depressant side effects than opioids commonly used to treat pain. However, it is unclear whether these improved safety profiles are due to a reduction in β-arrestin–mediated signaling or, alternatively, to their low intrinsic efficacy in all signaling pathways. Here, we systematically evaluated the most recent and promising MOR-biased ligands and assessed their pharmacological profile against existing opioid analgesics in assays not confounded by limited signal windows. We found that oliceridine, PZM21, and SR-17018 had low intrinsic efficacy. We also demonstrated a strong correlation between measures of efficacy for receptor activation, G protein coupling, and β-arrestin recruitment for all tested ligands. By measuring the antinociceptive and respiratory depressant effects of these ligands, we showed that the low intrinsic efficacy of opioid ligands can explain an improved side effect profile. Our results suggest a possible alternative mechanism underlying the improved therapeutic windows described for new opioid ligands, which should be taken into account for future descriptions of ligand action at this important therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.