SUMMARY The Gram-negative bacterium Yersinia pestis is responsible for deadly plague, a zoonotic disease established in stable foci in the Americas, Africa, and Eurasia. Its persistence in the environment relies on the subtle balance between Y. pestis-contaminated soils, burrowing and nonburrowing mammals exhibiting variable degrees of plague susceptibility, and their associated fleas. Transmission from one host to another relies mainly on infected flea bites, inducing typical painful, enlarged lymph nodes referred to as buboes, followed by septicemic dissemination of the pathogen. In contrast, droplet inhalation after close contact with infected mammals induces primary pneumonic plague. Finally, the rarely reported consumption of contaminated raw meat causes pharyngeal and gastrointestinal plague. Point-of-care diagnosis, early antibiotic treatment, and confinement measures contribute to outbreak control despite residual mortality. Mandatory primary prevention relies on the active surveillance of established plague foci and ectoparasite control. Plague is acknowledged to have infected human populations for at least 5,000 years in Eurasia. Y. pestis genomes recovered from affected archaeological sites have suggested clonal evolution from a common ancestor shared with the closely related enteric pathogen Yersinia pseudotuberculosis and have indicated that ymt gene acquisition during the Bronze Age conferred Y. pestis with ectoparasite transmissibility while maintaining its enteric transmissibility. Three historic pandemics, starting in 541 AD and continuing until today, have been described. At present, the third pandemic has become largely quiescent, with hundreds of human cases being reported mainly in a few impoverished African countries, where zoonotic plague is mostly transmitted to people by rodent-associated flea bites.
Yersinia pestis DNA was recently detected in human remains from 2 ancient plague pandemics in France and Germany. We have now sequenced Y. pestis glpD gene in such remains, showing a 93-bp deletion specific for biotype Orientalis. These data show that only Orientalis type caused the 3 plague pandemics.
Chemical decomposition and fragmentation may limit the detection of ancient host and microbial DNA while some proteins can be detected for extended periods of time. We applied paleoproteomics on 300-year-old dental pulp specimens recovered from 16 individuals in two archeological funeral sites in France, comprising one documented plague site and one documented plague-negative site. The dental pulp paleoproteome of the 16 teeth comprised 439 peptides representative of 30 proteins of human origin and 211 peptides representative of 27 proteins of non-human origin. Human proteins consisted of conjunctive tissue and blood proteins including IgA immunoglobulins. Four peptides were indicative of three presumable Yersinia pestis proteins detected in 3/8 dental pulp specimens from the plague-positive site but not in the eight dental pulp specimens collected in the plague-negative site. Paleoproteomics applied to the dental pulp is a new and innovative approach to screen ancient individuals for the detection of blood-borne pathogens and host inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.