View related articles View Crossmark data Citing articles: 4 View citing articles PAPER Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality
The objective of the present study was to evaluate the effects of partial or total replacement of finisher diet soybean oil with black soldier fly (Hermethia illucens L.; HI) larva fat on the growth performance, carcass traits, blood parameters, intestinal morphology and histological features of broiler chickens. At 21 days of age, a total of 120 male broiler chickens (Ross 308) were randomly allocated to three experimental groups (five replicates and eight birds/pen). To a basal control diet (C; 68.7 g/kg as fed of soybean oil), either 50% or 100% of the soybean oil was replaced with HI larva fat (HI50 and HI100 group, respectively). Growth performance was evaluated throughout the trial. At day 48, 15 birds (three birds/pen) per group were slaughtered at a commercial abattoir. Carcass yield and proportions of carcass elements were recorded. Blood samples were taken from each slaughtered chicken for haematochemical index determination. Morphometric analyses were performed on the duodenum, jejunum and ileum. Samples of liver, spleen, thymus, bursa of fabricius, kidney and heart were submitted to histological investigations. Growth performance, carcass traits, haematochemical parameters and gut morphometric indexes were not influenced by the dietary inclusion of HI larva fat. Histopathological alterations developed in the spleen, thymus, bursa of fabricius and liver and were identified in all of the experimental groups, but HI larva fat inclusion did not significantly affect (P>0.05) the severity of the histopathological findings. The present study suggests that 50% or 100% replacement of soybean oil with HI larva fat in broiler chickens diets has no adverse effects on growth performance or blood parameters and had no beneficial effect on gut health.
Insects are currently being considered as a novel protein source for animal feeds, because they contain a large amount of protein. The larvae of Tenebrio molitor (TM) have been shown to be an acceptable protein source for broiler chickens in terms of growth performance, but till now, no data on histological or intestinal morphometric features have been reported. This study has had the aim of evaluating the effects of dietary TM inclusion on the performance, welfare, intestinal morphology and histological features of free-range chickens. A total of 140 medium-growing hybrid female chickens were free-range reared and randomly allotted to two dietary treatments: (i) a control group and (ii) a TM group, in which TM meal was included at 75 g/kg. Each group consisted of five pens as replicates, with 14 chicks per pen. Growth performance, haematological and serum parameters and welfare indicators were evaluated, and the animals were slaughtered at the age of 97 days. Two birds per pen (10 birds/treatment) were submitted to histological (liver, spleen, thymus, bursa of Fabricius, kidney, heart, glandular stomach and gut) and morphometric (duodenum, jejunum and ileum) investigations. The inclusion of TM did not affect the growth performance, haematological or serum parameters. The morphometric and histological features were not significantly affected either, thus suggesting no influence on nutrient metabolization, performance or animal health. Glandular stomach alterations (chronic flogosis with epithelial squamous metaplasia) were considered paraphysiological in relation to free-range farming. The observed chronic intestinal flogosis, with concomitant activation of the lymphoid tissue, was probably due to previous parasitic infections, which are very frequently detected in free-range chickens. In conclusion, the findings of this study show that yellow mealworm inclusion does not affect the welfare, productive performances or morphological features of free-range chickens, thus confirming that TM can be used safely in poultry diets.
This study evaluated the effects of Tenebrio molitor (TM) larvae meal inclusion in diets for broilers. A total of 160 male broiler chicks (Ross 708) at one-day of age were randomly allotted to four dietary treatments: a control (C) group and three TM groups, in which TM meal was included at 50 (TM5), 100 (TM10), and 150 (TM15) g/kg, respectively. The experimental diets were isonitrogenous and isoenergetic. Each group consisted of five pens as replicates (8 chicks/pen). After the evaluation of growth performance and haematochemical parameters, the animals were slaughtered at 53 days and carcass traits were recorded. Morphometric investigations were performed on duodenum, jejunum, and ileum and histopathological alterations were assessed for liver, spleen, thymus, bursa of Fabricius, kidney, and heart. The live weight (LW) showed a linear (12 and 25 days, P < 0.001 and P < 0.05, maximum with TM15 and TM10) and quadratic (53 days, P < 0.05, maximum with TM5) response to dietary TM meal inclusion. A linear (1 to 12 and 12 to 25 days, P < 0.001, maximum with TM15) and quadratic (12 to 25 days, P = 0.001, maximum with TM15) effect was also observed for the daily feed intake (DFI). The feed conversion ratio (FCR) showed a linear response (25 to 53 and 1 to 53 days, P = 0.001 and P < 0.05, maximum with TM15). Haematological and serum biochemical traits, carcass traits and histopathological findings were not affected by dietary TM meal inclusion (P > 0.05). TM15 birds showed lower villus height (P < 0.05), higher crypt depth (P < 0.05), and lower villus height to crypt depth ratio (P = 0.001) compared with C and TM5. In conclusion, increasing levels of dietary TM meal inclusion in male broiler chickens may improve body weight and feed intake, but negatively affect feed efficiency and intestinal morphology, thus suggesting that low levels may be more suitable. However, no effect on haematochemical parameters, carcass traits, and histological findings were observed in relation to TM meal utilization.
Background The aim of this trial was to investigate the effects of different inclusion levels of a partially defatted black soldier fly (BSF, Hermetia illucens L.) larva meal on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features of piglets. A total of 48 newly weaned piglets were individually weighed (initial body weight (IBW): 6.1 ± 0.16 kg) and randomly allocated to 3 dietary treatments (4 boxes as replicates/treatment and 4 animals/box). BSF larva meal was included at increasing levels (0% [BSF0], 5% [BSF5] and 10% [BSF10]) in isonitrogenous and isoenergetic diets formulated for two feeding phases: I (from d 1 to d 23) and II (from d 24 to d 61). The weight gain (WG), average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR) were calculated for each feeding phase and for the whole trial. The haematochemical parameters and nutrient digestibility of the piglets were also evaluated. A total of 3 piglets per box were slaughtered on d 61 and the slaughtered piglets were submitted to morphometric investigations and histopathological examinations. Results No overall significant differences were observed for growth performance ( P > 0.05), except for the ADFI of phase II, which showed a linear response to increasing BSF meal levels ( P < 0.05, maximum for the BSF10 group). Dietary BSF meal inclusion did not significantly influence the blood profile, except as far as monocytes and neutrophils are concerned, and these showed a linear and quadratic response, respectively, to increasing BSF meal levels ( P < 0.05, maximum for the BSF10 and BSF5 groups, respectively). On the other hand, the nutrient digestibility, gut morphology and histological features were not affected by dietary BSF meal inclusion ( P > 0.05). Conclusions The obtained results show that a partially defatted BSF larva meal can be used as a feed ingredient in diets for weaned piglets without negatively affecting their growth performance, nutrient digestibility, blood profile, gut morphology or histological features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.