Excess hepatic storage of triglycerides is considered a benign condition, but nonalcoholic steatohepatitis (NASH) may progress to fibrosis and promote atherosclerosis. Carriers of the TM6SF2 E167K variant have fatty liver as a result of reduced secretion of very-low-density lipoproteins (VLDLs). As a result, they have lower circulating lipids and reduced risk of myocardial infarction. In this study, we aimed to assess whether TM6SF2 E167K affects liver damage and cardiovascular outcomes in subjects at risk of NASH. Liver damage was evaluated in 1,201 patients who underwent liver biopsy for suspected NASH; 427 were evaluated for carotid atherosclerosis. Cardiovascular outcomes were assessed in 1,819 controls from the Swedish Obese Subjects (SOS) cohort. Presence of the inherited TM6SF2 E167K variant was determined by TaqMan assays. In the liver biopsy cohort, 188 subjects (13%) were carriers of the E167K variant. They had lower serum lipid levels than noncarriers (P < 0.05), had more-severe steatosis, necroinflammation, ballooning, and fibrosis (P < 0.05), and were more likely to have NASH (odds ratio [OR]: 1.84; 95% confidence interval [CI]: 1.23-2.79) and advanced fibrosis (OR, 2.08; 95% CI: 1.20-3.55), after adjustment for age, sex, body mass index, fasting hyperglycemia, and the I148M PNPLA3 risk variant. However, E167K carriers had lower risk of developing carotid plaques (OR, 0.49; 95% CI: 0.25-0.94). In the SOS cohort, E167K carriers had higher alanine aminotransferase ALT and lower lipid levels (P < 0.05), as well as a lower incidence of cardiovascular events (hazard ratio: 0.61; 95% CI: 0.39-0.95). Conclusions: Carriers of the TM6SF2 E167K variant are more susceptible to progressive NASH, but are protected against cardiovascular disease. Our findings suggest that reduced ability to export VLDLs is deleterious for the liver. (HEPATOLOGY 2015;61:506-514) W ith the rise in obesity rates, nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, 1 is becoming the leading cause of liver damage in Western countries. 2 Accumulation of triglycerides (TGs) exceeding 5% of liver weight is considered a benign response
Background and AimsNonalcoholic fatty liver disease is epidemiologically associated with hepatic and metabolic disorders. The aim of this study was to examine whether hepatic fat accumulation has a causal role in determining liver damage and insulin resistance.MethodsWe performed a Mendelian randomization analysis using risk alleles in PNPLA3, TM6SF2, GCKR and MBOAT7, and a polygenic risk score for hepatic fat, as instruments. We evaluated complementary cohorts of at‐risk individuals and individuals from the general population: 1515 from the liver biopsy cohort (LBC), 3329 from the Swedish Obese Subjects Study (SOS) and 4570 from the population‐based Dallas Heart Study (DHS).ResultsHepatic fat was epidemiologically associated with liver damage, insulin resistance, dyslipidemia and hypertension. The impact of genetic variants on liver damage was proportional to their effect on hepatic fat accumulation. Genetically determined hepatic fat was associated with aminotransferases, and with inflammation, ballooning and fibrosis in the LBC. Furthermore, in the LBC, the causal association between hepatic fat and fibrosis was independent of disease activity, suggesting that a causal effect of long‐term liver fat accumulation on liver disease is independent of inflammation. Genetically determined hepatic steatosis was associated with insulin resistance in the LBC and SOS. However, this association was dependent on liver damage severity. Genetically determined hepatic steatosis was associated with liver fibrosis/cirrhosis and with a small increase in risk of type 2 diabetes in publicly available databases.ConclusionThese data suggest that long‐term hepatic fat accumulation plays a causal role in the development of chronic liver disease.
Statin use was associated with protection towards the full spectrum of liver damage in individuals at risk of non-alcoholic steatohepatitis. However, the I148M PNPLA3 risk variant limited this beneficial effect.
Nonalcoholic fatty liver disease (NAFLD) represents an emerging cause of hepatocellular carcinoma (HCC), especially in non-cirrhotic individuals. The rs641738 C > T MBOAT7/TMC4 variant predisposes to progressive NAFLD, but the impact on hepatic carcinogenesis is unknown. In Italian NAFLD patients, the rs641738 T allele was associated with NAFLD-HCC (OR 1.65, 1.08–2.55; n = 765), particularly in those without advanced fibrosis (p < 0.001). The risk T allele was linked to 3’-UTR variation in MBOAT7 and to reduced MBOAT7 expression in patients without severe fibrosis. The number of PNPLA3, TM6SF2, and MBOAT7 risk variants was associated with NAFLD-HCC independently of clinical factors (p < 0.001), but did not significantly improve their predictive accuracy. When combining data from an independent UK NAFLD cohort, in the overall cohort of non-cirrhotic patients (n = 913, 41 with HCC) the T allele remained associated with HCC (OR 2.10, 1.33–3.31). Finally, in a combined cohort of non-cirrhotic patients with chronic hepatitis C or alcoholic liver disease (n = 1121), the T allele was independently associated with HCC risk (OR 1.93, 1.07–3.58). In conclusion, the MBOAT7 rs641738 T allele is associated with reduced MBOAT7 expression and may predispose to HCC in patients without cirrhosis, suggesting it should be evaluated in future prospective studies aimed at stratifying NAFLD-HCC risk.
Resveratrol 1 (3,4',5-trihydroxy-trans-stilbene), a phytoalexin present in grapes and other food products, has recently been suggested as a potential cancer chemopreventive agent based on its striking inhibitory effects on cellular events associated with cancer initiation, promotion, and progression. This triphenolic stilbene has also displayed in vitro growth inhibition in a number of human cancer cell lines. In this context, a series of cis- and trans-stilbene-based resveratrols were prepared with the aim of discovering new lead compounds with clinical potential. All the synthesized compounds were tested in vitro for cell growth inhibition and the ability to induce apoptosis in HL60 promyelocytic leukemia cells. The tested trans-stilbene derivatives were less potent than their corresponding cis isomers, except for trans-resveratrol, whose cis isomer was less active. The best results were obtained with compounds 11b and 7b, the cis-3,5-dimethoxy derivatives of rhapontigenin 10a (3,5,3'-trihydroxy-4'methoxy-trans-stilbene) and its 3'-amino derivative 10b, respectively, which showed apoptotic activity at nanomolar concentrations. The corresponding trans isomers 12b and 8b were less active both as antiproliferative and as apoptosis-inducing agents. Of interest, 11b and 7b were active toward resistant HL60R cells and their activity was higher than that of several classic chemotherapeutic agents. The flow cytometry assay showed that at 50 nM compounds 7b or 11b were able to recruit almost all cells in the apoptotic sub-G(0)-G(1) peek, thus suggesting that the main mechanism of cytotoxicity of these compounds could be the activation of apoptosis. These data indicate unambiguously that structural alteration of the stilbene motif of resveratrol can be extremely effective in producing potent apoptosis-inducing agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.