The ability to adapt cellular metabolism to nutrient availability is critical for survival. The liver plays a central role in the adaptation to starvation by switching from glucose-consuming processes and lipid synthesis to providing energy substrates like glucose to the organism. Here we report a previously unrecognized role of the tumor suppressor p53 in the physiologic adaptation to food withdrawal. We found that starvation robustly increases p53 protein in mouse liver. This induction was posttranscriptional and mediated by a hepatocyte-autonomous and AMP-activated protein kinase-dependent mechanism. p53 stabilization was required for the adaptive expression of genes involved in amino acid catabolism. Indeed, acute deletion of p53 in livers of adult mice impaired hepatic glycogen storage and induced steatosis. Upon food withdrawal, p53-deleted mice became hypoglycemic and showed defects in the starvation-associated utilization of hepatic amino acids. In summary, we provide novel evidence for a p53-dependent integration of acute changes of cellular energy status and the metabolic adaptation to starvation. Because of its tumor suppressor function, p53 stabilization by starvation could have implications for both metabolic and oncological diseases of the liver.—Prokesch, A., Graef, F. A., Madl, T., Kahlhofer, J., Heidenreich, S., Schumann, A., Moyschewitz, E., Pristoynik, P., Blaschitz, A., Knauer, M., Muenzner, M., Bogner-Strauss, J. G., Dohr, G., Schulz, T. J., Schupp, M. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis.
Reduced de novo lipogenesis in adipose tissue, often observed in obese individuals, is thought to contribute to insulin resistance. Besides trapping excess glucose and providing for triglycerides and energy storage, endogenously synthesized lipids can function as potent signaling molecules. Indeed, several specific lipids and their molecular targets that mediate insulin sensitivity have been recently identified. Here, we report that carbohydrate-response element-binding protein (ChREBP), a transcriptional inducer of glucose use and de novo lipogenesis, controls the activity of the adipogenic master regulator peroxisome proliferator-activated receptor (PPAR)γ. Expression of constitutive-active ChREBP in precursor cells activated endogenous PPARγ and promoted adipocyte differentiation. Intriguingly, ChREBP-constitutive-active ChREBP expression induced PPARγ activity in a fatty acid synthase-dependent manner and by trans-activating the PPARγ ligand-binding domain. Reducing endogenous ChREBP activity by either small interfering RNA-mediated depletion, exposure to low-glucose concentrations, or expressing a dominant-negative ChREBP impaired differentiation. In adipocytes, ChREBP regulated the expression of PPARγ target genes, in particular those involved in thermogenesis, similar to synthetic PPARγ ligands. In summary, our data suggest that ChREBP controls the generation of endogenous fatty acid species that activate PPARγ. Thus, increasing ChREBP activity in adipose tissue by therapeutic interventions may promote insulin sensitivity through PPARγ.
Retinol-binding protein 4 (RBP4) is the major transport protein for retinol in blood. Recent evidence from genetic mouse models shows that circulating RBP4 derives exclusively from hepatocytes. Because RBP4 is elevated in obesity and associates with the development of glucose intolerance and insulin resistance, we tested whether a liver-specific overexpression of RBP4 in mice impairs glucose homeostasis. We used adeno-associated viruses (AAV) that contain a highly liver-specific promoter to drive expression of murine RBP4 in livers of adult mice. The resulting increase in serum RBP4 levels in these mice was comparable with elevated levels that were reported in obesity. Surprisingly, we found that increasing circulating RBP4 had no effect on glucose homeostasis. Also during a high-fat diet challenge, elevated levels of RBP4 in the circulation failed to aggravate the worsening of systemic parameters of glucose and energy homeostasis. These findings show that liver-secreted RBP4 does not impair glucose homeostasis. We conclude that a modest increase of its circulating levels in mice, as observed in the obese, insulin-resistant state, is unlikely to be a causative factor for impaired glucose homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.