Microstructural changes in periventricular functionally relevant white matter structures (CSF, CC) in chronic idiopathic hydrocephalus can be visualized using DTI. Further studies should investigate the change of DTI parameters after CSF shunting and its relation to neurologic outcome.
The activation of immune cells by targeting checkpoint inhibitors showed promising results with increased patient survival in distinct primary cancers. Since only limited data exist for human brain metastases, we aimed at characterizing tumor infiltrating lymphocytes (TILs) and expression of immune checkpoints in the respective tumors.Two brain metastases cohorts, a mixed entity cohort (n = 252) and a breast carcinoma validation cohort (n = 96) were analyzed for CD3+, CD8+, FOXP3+, PD-1+ lymphocytes and PD-L1+ tumor cells by immunohistochemistry. Analyses for association with clinico-epidemiological and neuroradiological parameters such as patient survival or tumor size were performed.TILs infiltrated brain metastases in three different patterns (stromal, peritumoral, diffuse). While carcinomas often show a strong stromal infiltration, TILs in melanomas often diffusely infiltrate the tumors. Highest levels of CD3+ and CD8+ lymphocytes were seen in renal cell carcinomas (RCC) and strongest PD-1 levels on RCCs and melanomas. High amounts of TILs, high ratios of PD-1+/CD8+ cells and high levels of PD-L1 were negatively correlated with brain metastases size, indicating that in smaller brain metastases CD8+ immune response might get blocked. PD-L1 expression strongly correlated with TILs and FOXP3 expression. No significant association of patient survival with TILs was observed, while high levels of PD-L1 showed a strong trend towards better survival in melanoma brain metastases (Log-Rank p = 0.0537).In summary, melanomas and RCCs seem to be the most immunogenic entities. Differences in immunotherapeutic response between tumor entities regarding brain metastases might be attributable to this finding and need further investigation in larger patient cohorts.
PurposeMetabolic changes upon antiangiogenic therapy of recurrent glioblastomas (rGBMs) may provide new biomarkers for treatment efficacy. Since in vitro models showed that phospholipid membrane metabolism provides specific information on tumor growth we employed in-vivo MR-spectroscopic imaging (MRSI) of human rGBMs before and under bevacizumab (BVZ) to measure concentrations of phosphocholine (PCho), phosphoethanolamine (PEth), glycerophosphocholine (GPC), and glyceroethanolamine (GPE).Methods
1H and 31P MRSI was prospectively performed in 32 patients with rGBMs before and under BVZ therapy at 8 weeks intervals until tumor progression. Patients were dichotomized into subjects with long overall survival (OS) (>median OS) and short OS (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.