Leukotriene B(4) (LTB(4)) is a pro-inflammatory mediator that has been implicated in the pathogenesis of a number of diseases including inflammatory bowel disease (IBD) and psoriasis. Since the action of LTA(4) hydrolase is the rate-limiting step for LTB(4) production, this enzyme represents an attractive pharmacological target for the suppression of LTB(4) production. From an in-house screening program, SC-22716 (1, 1-[2-(4-phenylphenoxy)ethyl]pyrrolidine) was identified as a potent inhibitor of LTA(4) hydrolase. Structure-activity relationship (SAR) studies around this structural class resulted in the identification of a number of novel, potent inhibitors of LTA(4) hydrolase, several of which demonstrated good oral activity in a mouse ex vivo whole blood assay.
Leukotriene B(4) (LTB(4)) is a potent, proinflammatory mediator involved in the pathogenesis of a number of diseases including inflammatory bowel disease, psoriasis, rheumatoid arthritis, and asthma. The enzyme LTA(4) hydrolase represents an attractive target for pharmacological intervention in these disease states, since the action of this enzyme is the rate-limiting step in the production of LTB(4). Our previous efforts focused on the exploration of a series of analogues related to screening hit SC-22716 (1, 1-[2-(4-phenylphenoxy)ethyl]pyrrolidine) and resulted in the identification of potent, orally active inhibitors such as 2. Additional structure-activity relationship studies around this structural class resulted in the identification of a series of alpha-, beta-, and gamma-amino acid analogues that are potent inhibitors of the LTA(4) hydrolase enzyme and demonstrated good oral activity in a mouse ex vivo whole blood LTB(4) production assay. The efforts leading to the identification of clinical candidate SC-57461A (8d, 3-[methyl[3-[4-(phenylmethyl)phenoxy]propyl]amino]propanoic acid) are described.
Leukotriene B4 (LTB4) and 12(R)-hydroxyeicosatetraenoic acid [12(R)-HETE] are proinflammatory products of arachidonic acid metabolism that have been implicated as mediators in a number of inflammatory diseases. When injected intradermally into the guinea pig. LTB4 and 12(R)-HETE elicit a dose-dependent migration (chemotaxis) of neutrophils (PMNs) into the injection sites as assessed by the presence of a neutrophil marker enzyme myeloperoxidase. SC-41930 (7-[3-(4-acetyl-3-methoxy-2-propylphenoxy)propoxyl]-3,4-dihy dro-8-propyl-2H - 1-benzopyran-2-carboxylic acid), a first-generation LTB4 receptor antagonist, inhibited the chemotactic actions of LTB4 when given orally with an ED50 value of 1.7 mg/kg. The second-generation LTB4 receptor antagonist, SC-53228 [(+)-(S)-7-(3-(2-(cyclopropylmethyl)-3-methoxy-4- [(methylamino)carbonyl]phenoxy)propoxy)-3,4-dihydro-8-propyl-2H-1- benzopyran-2-propanoic acid], inhibited LTB4-induced chemotaxis when given intragastrically with an ED50 value of 0.07 mg/kg. Furthermore, SC-53228 inhibited 12(R)-HETE-induced granulocyte chemotaxis with an oral ED50 value of 5.8 mg/kg. When dosed orally over a range of 0.03-100 mg/kg, SC-53228 gave Cmax plasma concentrations of 0.015-41.1 micrograms/ml. SC-53228 inhibited LTB4-primed membrane depolarization of human neutrophils with an IC50 value of 34 nM. As a potent LTB4 receptor antagonist, SC-53228 may well have application in the medical management of disease states such as asthma, rheumatoid arthritis, inflammatory bowel disease, contact dermatitis, and psoriasis, in which LTB4 and/or 12(R)-HETE are implicated as inflammatory mediators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.