Curved sensors are a suitable technological solution to enhance the vast majority of optical systems. In this work, we show the entire process to create curved sensor-based optical systems and the possibilities they offer. This paper defines the boundaries of the reachable curvatures for a full range of monolithic sensors. We discuss how the curved focal plane shape is related to the imaged scenes and optical parameters. Two camera prototypes are designed, realized and tested, demonstrating a new compact optical architecture for a 40 degree compact objective, as well as a wide field fisheye zoom objective using a convex sensor to image a 180 degree field of view.
Due to the increasing dimension, complexity and cost of the future astronomical surveys, new technologies enabling more compact and simpler systems are required. The development of curved detectors allows to enhance the performances of the optical system used (telescope or astronomical instrument), while keeping the system more compact. We describe here a set of five curved CMOS detectors developed within a collaboration between CEA-LETI and CNRS-LAM. These fully-functional detectors 20 Mpix (CMOSIS CMV20000) have been curved to different radii of curvature and spherical shapes (both convex and concave) over a size of 24x32 mm 2 . Before being able to use them for astronomical observations, we assess the impact of the curving process on their performances. We perform a full electro-optical characterization of the curved detectors, by measuring the gain, the full well capacity, the dynamic-range and the noise properties, such as dark current, readout noise, pixel-relative-non-uniformity. We repeat the same process for the flat version of the same CMOS sensor, as a reference for comparison. We find no significant difference among most of the characterization values of the curved and flat samples. We obtain values of readout noise of 10e − for the curved samples compared to the 11e − of the flat sample, which provides slightly larger dynamic ranges for the curved detectors. Additionally we measure consistently smaller values of dark current compared to the flat CMOS sensor. The curving process for the prototypes shown in this paper does not significantly impact the performances of the detectors. These results represent the first step towards their astronomical implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.