IntroductionPneumothorax and pneumomediastinum have both been noted to complicate cases of COVID-19 requiring hospital admission. We report the largest case series yet described of patients with both these pathologies that includes non-ventilated patients.MethodsCases were collected retrospectively from UK hospitals with inclusion criteria limited to a diagnosis of COVID-19 and the presence of either pneumothorax or pneumomediastinum. Patients included in the study presented between March and June 2020. Details obtained from the medical record included demographics, radiology, laboratory investigations, clinical management and survival.ResultsSeventy-one patients from 16 centres were included in the study, of whom 60 patients had pneumothoraces (six also with pneumomediastinum), whilst 11 patients had pneumomediastinum alone. Two of these patients had two distinct episodes of pneumothorax, occurring bilaterally in sequential fashion, bringing the total number of pneumothoraces included to 62. Clinical scenarios included patients who had presented to hospital with pneumothorax, patients who had developed pneumothorax or pneumomediastinum during their inpatient admission with COVID-19 and patients who developed their complication whilst intubated and ventilated, either with or without concurrent extracorporeal membrane oxygenation. Survival at 28 days was not significantly different following pneumothorax (63.1%±6.5%) or isolated pneumomediastinum (53.0%±18.7%; p=0.854). The incidence of pneumothorax was higher in males. The 28-day survival was not different between the sexes (males 62.5%±7.7% versus females 68.4%±10.7%; p=0.619). Patients above the age of 70 had a significantly lower 28-day survival than younger individuals (≥70 years 41.7%±13.5% survival versus <70 years 70.9%±6.8% survival; p=0.018 log-rank).ConclusionThese cases suggest that pneumothorax is a complication of COVID-19. Pneumothorax does not seem to be an independent marker of poor prognosis and we encourage active treatment to be continued where clinically possible.
Rationale: Clinical and epidemiologic data in coronavirus disease (COVID-19) have accrued rapidly since the outbreak, but few address the underlying pathophysiology. Objectives: To ascertain the physiologic, hematologic, and imaging basis of lung injury in severe COVID-19 pneumonia. Methods: Clinical, physiologic, and laboratory data were collated. Radiologic (computed tomography (CT) pulmonary angiography [n = 39] and dual-energy CT [DECT, n = 20]) studies were evaluated: observers quantified CT patterns (including the extent of abnormal lung and the presence and extent of dilated peripheral vessels) and perfusion defects on DECT. Coagulation status was assessed using thromboelastography. Measurements and Results: In 39 consecutive patients (male: female, 32:7; mean age, 53 6 10 yr [range, 29-79 yr]; Black and minority ethnic, n = 25 [64%]), there was a significant vascular perfusion abnormality and increased physiologic dead space (dynamic compliance, 33.7 6 14.7 ml/cm H 2 O; Murray lung injury score, 3.14 6 0.53; mean ventilatory ratios, 2.6 6 0.8) with evidence of hypercoagulability and fibrinolytic "shutdown". The mean CT extent (6SD) of normally aerated lung, ground-glass opacification, and dense parenchymal opacification were 23.5 6 16.7%, 36.3 6 24.7%, and 42.7 6 27.1%, respectively. Dilated peripheral vessels were present in 21/33 (63.6%) patients with at least two assessable lobes (including 10/21 [47.6%] with no evidence of acute pulmonary emboli). Perfusion defects on DECT (assessable in 18/20 [90%]) were present in all patients (wedge-shaped, n = 3; mottled, n = 9; mixed pattern, n = 6). Conclusions: Physiologic, hematologic, and imaging data show not only the presence of a hypercoagulable phenotype in severe COVID-19 pneumonia but also markedly impaired pulmonary perfusion likely caused by pulmonary angiopathy and thrombosis.
IMPORTANCEIn patients who require mechanical ventilation for acute hypoxemic respiratory failure, further reduction in tidal volumes, compared with conventional low tidal volume ventilation, may improve outcomes. OBJECTIVE To determine whether lower tidal volume mechanical ventilation using extracorporeal carbon dioxide removal improves outcomes in patients with acute hypoxemic respiratory failure. DESIGN, SETTING, AND PARTICIPANTS This multicenter, randomized, allocation-concealed, open-label, pragmatic clinical trial enrolled 412 adult patients receiving mechanical ventilation for acute hypoxemic respiratory failure, of a planned sample size of 1120, between May 2016 and December 2019 from 51 intensive care units in the UK. Follow-up ended on March 11, 2020. INTERVENTIONS Participants were randomized to receive lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal for at least 48 hours (n = 202) or standard care with conventional low tidal volume ventilation (n = 210). MAIN OUTCOMES AND MEASURESThe primary outcome was all-cause mortality 90 days after randomization. Prespecified secondary outcomes included ventilator-free days at day 28 and adverse event rates. RESULTS Among 412 patients who were randomized (mean age, 59 years; 143 [35%] women), 405 (98%) completed the trial. The trial was stopped early because of futility and feasibility following recommendations from the data monitoring and ethics committee. The 90-day mortality rate was 41.5% in the lower tidal volume ventilation with extracorporeal carbon dioxide removal group vs 39.5% in the standard care group (risk ratio, 1.05 [95% CI, 0.83-1.33]; difference, 2.0% [95% CI, −7.6% to 11.5%]; P = .68). There were significantly fewer mean ventilator-free days in the extracorporeal carbon dioxide removal group compared with the standard care group (7.1 [95% CI, 5.9-8.3] vs 9.2 [95% CI, 7.9-10.4] days; mean difference, −2.1 [95% CI, −3.8 to −0.3]; P = .02). Serious adverse events were reported for 62 patients (31%) in the extracorporeal carbon dioxide removal group and 18 (9%) in the standard care group, including intracranial hemorrhage in 9 patients (4.5%) vs 0 (0%) and bleeding at other sites in 6 (3.0%) vs 1 (0.5%) in the extracorporeal carbon dioxide removal group vs the control group. Overall, 21 patients experienced 22 serious adverse events related to the study device.CONCLUSIONS AND RELEVANCE Among patients with acute hypoxemic respiratory failure, the use of extracorporeal carbon dioxide removal to facilitate lower tidal volume mechanical ventilation, compared with conventional low tidal volume mechanical ventilation, did not significantly reduce 90-day mortality. However, due to early termination, the study may have been underpowered to detect a clinically important difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.