The purpose of this paper is to provide a brief overview of current thinking on the role of connexins, in particular Cx43, in growth regulation, and a more detailed discussion as to potential mechanisms involved with an emphasis on gene expression. While the precise molecular mechanism by which connexins can affect the growth of normal or tumor cells remains elusive, a number of exciting reports have expanded our understanding and are presented in some detail. Thus, we will discuss (Section 2): the role of protein-protein interactions in integrating connexins into multiple signal transduction pathways; phosphorylation at specific sites and reversal of growth inhibition; the role of the carboxy-terminal regulatory domain as a signaling molecule. Some of our latest work on the potential functions of endogenously produced carboxy-terminal fragments of Cx43 are also presented (Section 3). Finally, Section 4 will pay tribute to the rapidly emerging realization that connexins such as Cx43 and Cx32 exert important and extensive effects on gene expression, particularly those genes linked to growth regulation.
Background-Numerous studies have reported evidence of cardiac injury associated with transient left ventricular (LV) systolic and diastolic dysfunction after prolonged and strenuous exercise. We used 2D ultrasound speckle tracking imaging to evaluate the effect of an ultralong-duration exercise on LV regional strains and torsion. We speculated that systolic dysfunction after exercise is associated with depressed LV strains and torsion, and diastolic dysfunction results from decreased and delayed untwisting, a key factor of LV suction and early filling. Methods and Results-Twenty-three triathletes underwent conventional and speckle tracking imaging echocardiography at rest before and immediately after an ultralong distance triathlon. Measurements included LV longitudinal, circumferential and radial strains, LV rotations, and LV torsion. After the race, LV systolic dysfunction was characterized by a decrease in LV longitudinal, radial, and circumferential strains, especially for apical radial strains (44.6Ϯ15.1% versus 31.1Ϯ13.8%, PϽ0.001). Peak torsion was slightly decreased (8.3Ϯ5.1°versus 6.4Ϯ3.9°, respectively, Pϭ0.09) and significantly delayed (91Ϯ18% versus 128Ϯ31% of systolic duration, PϽ0.001) beside end-ejection. Peak untwisting was also depressed and delayed beside isovolumic relaxation. Conclusions-This study documented major alterations in cardiac strains and torsion after an ultralong distance triathlon.LV systolic strains were depressed but not delayed, whereas twisting was decreased and delayed. This altered pattern hampered the rapid untwisting during isovolumic relaxation phase, reducing LV diastolic suction and early filling.
Chronic CO exposure promotes a pathological phenotype of cardiomyocytes in the absence of underlying cardiomyopathy. The less severe phenotype in vivo suggests a role for compensatory mechanisms. Arrhythmia propensity may derive from intracellular Ca(2+) overload.
Exercise is an efficient strategy for myocardial protection against ischemia-reperfusion (IR) injury. Although endothelial nitric oxide synthase (eNOS) is phosphorylated and activated during exercise, its role in exercise-induced cardioprotection remains unknown. This study investigated whether modulation of eNOS activation during IR could participate in the exercise-induced cardioprotection against IR injury. Hearts isolated from sedentary or exercised rats (5 weeks training) were perfused with a Langendorff apparatus and IR performed in the presence or absence of NOS inhibitors [N-nitro-L-arginine methyl ester, L-NAME or N5-(1-iminoethyl)-L-ornithine, L-NIO] or tetrahydrobiopterin (BH₄). Exercise training protected hearts against IR injury and this effect was abolished by L-NAME or by L-NIO treatment, indicating that exercise-induced cardioprotection is eNOS dependent. However, a strong reduction of eNOS phosphorylation at Ser1177 (eNOS-PSer1177) and of eNOS coupling during early reperfusion was observed in hearts from exercised rats (which showed higher eNOS-PSer1177 and eNOS dimerization at baseline) in comparison to sedentary rats. Despite eNOS uncoupling, exercised hearts had more S-nitrosylated proteins after early reperfusion and also less nitro-oxidative stress, indexed by lower malondialdehyde content and protein nitrotyrosination compared to sedentary hearts. Moreover, in exercised hearts, stabilization of eNOS dimers by BH4 treatment increased nitro-oxidative stress and then abolished the exercise-induced cardioprotection, indicating that eNOS uncoupling during IR is required for exercise-induced myocardial cardioprotection. Based on these results, we hypothesize that in the hearts of exercised animals, eNOS uncoupling associated with the improved myocardial antioxidant capacity prevents excessive NO synthesis and limits the reaction between NO and O₂·- to form peroxynitrite (ONOO⁻), which is cytotoxic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.