BackgroundTo evaluate the ability of the central venous-to-arterial CO2 content and tension differences to arteriovenous oxygen content difference ratios (∆ContCO2/∆ContO2 and ∆PCO2/∆ContO2, respectively), blood lactate concentration, and central venous oxygen saturation (ScvO2) to detect the presence of global anaerobic metabolism through the increase in oxygen consumption (VO2) after an acute increase in oxygen supply (DO2) induced by volume expansion (VO2/DO2 dependence).MethodsWe prospectively studied 98 critically ill mechanically ventilated patients in whom a fluid challenge was decided due to acute circulatory failure related to septic shock. Before and after volume expansion (500 mL of colloid solution), we measured cardiac index, VO2, DO2, ∆ContCO2/∆ContO2 and ∆PCO2/∆ContO2 ratios, lactate, and ScvO2. Fluid-responders were defined as a ≥15 % increase in cardiac index. Areas under the receiver operating characteristic curves (AUC) were determined for these variables.ResultsFifty-one patients were fluid-responders (52 %). DO2 increased significantly (31 ± 12 %) in these patients. An increase in VO2 ≥ 15 % (“VO2-responders”) concurrently occurred in 57 % of the 51 fluid-responders (45 ± 16 %). Compared with VO2-non-responders, VO2-responders were characterized by higher lactate levels and higher ∆ContCO2/∆ContO2 and ∆PCO2/∆ContO2 ratios. At baseline, lactate predicted a fluid-induced increase in VO2 ≥ 15 % with AUC of 0.745. Baseline ∆ContCO2/∆ContO2 and ∆PCO2/∆ContO2 ratios predicted an increase of VO2 ≥ 15 % with AUCs of 0.965 and 0.962, respectively. Baseline ScvO2 was not able to predict an increase of VO2 ≥ 15 % (AUC = 0.624).Conclusions∆ContCO2/∆ContO2 and ∆PCO2/∆ContO2 ratios are more reliable markers of global anaerobic metabolism than lactate. ScvO2 failed to predict the presence of global tissue hypoxia.Electronic supplementary materialThe online version of this article (doi:10.1186/s13613-016-0110-3) contains supplementary material, which is available to authorized users.
PurposeAcute respiratory failure (ARF) is a common life-threatening complication in morbidly obese patients with obesity hypoventilation syndrome (OHS). We aimed to identify the determinants of noninvasive ventilation (NIV) success or failure for this indication.MethodsWe prospectively included 76 consecutive patients with BMI>40 kg/m2 diagnosed with OHS and treated by NIV for ARF in a 15-bed ICU of a tertiary hospital.ResultsNIV failed to reverse ARF in only 13 patients. Factors associated with NIV failure included pneumonia (n = 12/13, 92% vs n = 9/63, 14%; p<0.0001), high SOFA (10 vs 5; p<0.0001) and SAPS2 score (63 vs 39; p<0.0001) at admission. These patients often experienced poor outcome despite early resort to endotracheal intubation (in-hospital mortality, 92.3% vs 17.5%; p<0.001). The only factor significantly associated with successful response to NIV was idiopathic decompensation of OHS (n = 30, 48% vs n = 0, 0%; p = 0.001). In the NIV success group (n = 63), 33 patients (53%) experienced a delayed response to NIV (with persistent hypercapnic acidosis during the first 6 hours).ConclusionsMultiple organ failure and pneumonia were the main factors associated with NIV failure and death in morbidly obese patients in hypoxemic ARF. On the opposite, NIV was constantly successful and could be safely pushed further in case of severe hypercapnic acute respiratory decompensation of OHS.
In patients in hypercapnic acute respiratory failure, for whom escalation to intubation is deemed inappropriate, switching to total face mask can be proposed as a last resort therapy when face mask-delivered noninvasive mechanical ventilation has already failed to reverse acute respiratory failure. This strategy is particularly adapted to provide prolonged periods of continuous noninvasive mechanical ventilation while preventing facial pressure sores.
In critically ill obese patients under mechanical ventilation, sitting position constantly and significantly relieved expiratory flow limitation and auto-positive end-expiratory pressure resulting in a dramatic drop in alveolar pressures. Combining sitting position and applied positive end-expiratory pressure provides the best strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.