Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its delta 13C signature. Leaching of biogenic DIC was 8.3 +/- 4.9 g m-2 yr-1 for forests, 24.1 +/- 7.2 g m-2 yr-1 for grasslands, and 14.6 +/- 4.8 g m-2 yr-1 for croplands. DOC leaching equalled 3.5 +/- 1.3 g m-2 yr-1 for forests, 5.3 +/- 2.0 g m-2 yr-1 for grasslands, and 4.1 +/- 1.3 g m-2 yr-1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4 +/- 4.0 g C m-2 yr-1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5-98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24-105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems
Soil respiration constitutes the second largest flux of carbon (C) between terrestrial ecosystems and the atmosphere. This study provides a synthesis of soil respiration (R s ) in 20 European grasslands across a climatic transect, including ten meadows, eight pastures and two unmanaged grasslands. Maximum rates of R s (R s max ), R s at a reference soil temperature (10°C; R s 10 ) and annual R s (estimated for 13 sites) ranged from 1.9 to 15.9 μmol CO 2 m −2 s −1 , 0.3 to 5.5 μmol CO 2 m −2 s −1 and 58 to 1988 g C m −2 y −1 , respectively. Values obtained for Central European mountain meadows are amongst the highest so far reported for any type of ecosystem. Across all sites R s max was closely related to R s 10 .Assimilate supply affected R s at timescales from daily (but not necessarily diurnal) to annual.Reductions of assimilate supply by removal of aboveground biomass through grazing and cutting resulted in a rapid and a significant decrease of R s . Temperature-independent seasonal fluctuations of R s of an intensively managed pasture were closely related to changes in leaf area index (LAI). Across sites R s 10 increased with mean annual soil temperature (MAT), LAI and gross primary productivity (GPP), indicating that assimilate supply overrides potential acclimation to prevailing temperatures. Also annual R s was closely related to LAI and GPP. Because the latter two parameters were coupled to MAT, temperature was a suitable surrogate for deriving estimates of annual R s across the grasslands studied. These findings contribute to our understanding of regional patterns of soil C fluxes and highlight the importance of assimilate supply for soil CO 2 emissions at various timescales.
The static chamber method (non-flow-through-non-steady-state chambers) is the most common method to measure fluxes of methane (CH4) from soils. Laboratory comparisons to quantify errors resulting from chamber design, operation and flux calculation methods are rare. We tested fifteen chambers against four flux levels (FL) ranging from 200 to 2300 mu g CH4 M-2 II-1. The measurements were conducted on a calibration tank using three quartz sand types with soil porosities of 53% (dry fine sand, S1), 47% (dry coarse sand, S2), and 33% (wetted fine sand, S3). The chambers tested ranged from 0.06 to 1.8 m in height, and 0.02 to 0.195 m(3) in volume, 7 of them were equipped with a fan, and 1 with a vent-tube. We applied linear and exponential flux calculation methods to the chamber data and compared these chamber fluxes to the reference fluxes from the calibration tank. The chambers underestimated the reference fluxes by on average 33% by the linear flux calculation method (R-Iin), whereas the chamber fluxes calculated by the exponential flux calculation method (R-exp) did not significantly differ from the reference fluxes (p <0.05). The flux under- or overestimations were chamber specific and independent of flux level. Increasing chamber height, area and volume significantly reduced the flux underestimation (p <0.05). Also, the use of non-linear flux calculation method significantly improved the flux estimation; however, simultaneously the uncertainty in the fluxes was increased. We provide correction factors, which can be used to correct the under- or overestimation of the fluxes by the chambers in the experiment. (C) 2012 Elsevier B.V. All rights reserved
The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.