The saturable uptake of chloroquine by parasites of Plasmodium falciparum has been attributed to specific carrier-mediated transport of chloroquine. It is suggested that chloroquine is transported in exchange for protons by the parasite membrane Na+/H+ exchanger [J Biol Chem 272:2652-2658 (1997)]. Once inside the parasite, it is proposed that chloroquine inhibits the polymerization of hematin, allowing this toxic hemoglobin metabolite to accumulate and kill the cell [Pharmacol Ther 57:203-235 (1993)]. To date, the contribution of these proposed mechanisms to the uptake and antimalarial activity of chloroquine has not been assessed. Using sodium-free medium, we demonstrate that chloroquine is not directly exchanged for protons by the plasmodial Na+/H+ exchanger. Furthermore, we show that saturable chloroquine uptake at equilibrium is due solely to the binding of chloroquine to hematin rather than active uptake: using Ro 40-4388, a potent and specific inhibitor of hemoglobin digestion and, by implication, hematin release, we demonstrate a concentration-dependent reduction in the number of chloroquine binding sites. An equal number of chloroquine binding sites are found in both resistant and susceptible clones, but the apparent affinity of chloroquine binding is found to correlate with drug activity (r2 = 0.93, p < 0.0001). This completely accounts for both the reduced drug accumulation and activity observed in resistant clones and the "reversal" of resistance produced by verapamil. The data presented here reconcile most of the available biochemical data from studies of the mode of action of chloroquine and the mechanism of chloroquine resistance. We show that the activity of chloroquine and amodiaquine is directly dependent on the saturable binding of the drugs to hematin and that the inhibition of hematin polymerization may be secondary to this binding. The chloroquine-resistance mechanism regulates the access of chloroquine to hematin. Our model is consistent with a resistance mechanism that acts specifically at the food vacuole to alter the binding of chloroquine to hematin rather than changing the active transport of chloroquine across the parasite plasma membrane.
We have investigated the contribution of drug accumulation and inhibition of heme polymerization to the in vitro activities of a series of antimalarial drugs. Only those compounds exhibiting structural relatedness to the quinolines inhibited heme polymerization. We could find no direct correlation between in vitro activity against chloroquine-susceptible or chloroquine-resistant isolates and either inhibition of heme polymerization or cellular drug accumulation for the drugs studied. However, in vitro activity against a chloroquine-susceptible isolate but not a chloroquine-resistant isolate showed a significant correlation with inhibition of heme polymerization when the activity was normalized for the extent of drug accumulation. The importance of these observations to the rational design of new quinoline-type drugs and the level of agreement of these conclusions with current views on quinoline drug action and resistance are discussed.
SUMMARYAnti-Wolbachia therapy delivers safe macrofilaricidal activity with superior therapeutic outcomes compared to all standard anti-filarial treatments, with the added benefit of substantial improvements in clinical pathology. These outcomes can be achieved, in principle, with existing registered drugs, e.g. doxycycline, that are affordable, available to endemic communities and have well known, albeit population-limiting, safety profiles. The key barriers to using doxycycline as an mass drug administration (MDA) strategy for widespread community-based control are the logistics of a relatively lengthy course of treatment (4–6 weeks) and contraindications in children under eight years and pregnancy. Therefore, the primary goal of the anti-Wolbachia (A·WOL) consortium is to find drugs and regimens that reduce the period of treatment from weeks to days (7 days or less), and to find drugs which would be safe in excluded target populations (pregnancy and children). A secondary goal is to refine regimens of existing antibiotics suitable for a more restricted use, prior to the availability of a regimen that is compatible with MDA usage. For example, for use in the event of the emergence of drug-resistance, in individuals with high loiasis co-infection and at risk of severe adverse events (SAE) to ivermectin, or in post-MDA ‘endgame scenarios’, where test and treat strategies become more cost effective and deliverable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.