The compositions of lesion types that precede and that may initiate the development of advanced atherosclerotic lesions are described and the possible mechanisms of their development are reviewed. While advanced lesions involve disorganization of the intima and deformity of the artery, such changes are absent or minimal in their precursors. Advanced lesions are either overtly clinical or they predispose to the complications that cause ischemic episodes; precursors are silent and do not lead directly to complications. The precursors are arranged in a temporal sequence of three characteristic lesion types. Types I and II are generally the only lesion types found in children, although they may also occur in adults. Type I lesions represent the very initial changes and are recognized as an increase in the number of intimal macrophages and the appearance of macrophages filled with lipid droplets (foam cells). Type II lesions include the fatty streak lesion, the first grossly visible lesion, and are characterized by layers of macrophage foam cells and lipid droplets within intimal smooth muscle cells and minimal coarse-grained particles and heterogeneous droplets of extracellular lipid. Type III (intermediate) lesions are the morphological and chemical bridge between type II and advanced lesions. Type III lesions appear in some adaptive intimal thickenings (progression-prone locations) in young adults and are characterized by pools of extracellular lipid in addition to all the components of type II lesions.
The compositions of lesion types that precede and that may initiate the development of advanced atherosclerotic lesions are described and the possible mechanisms of their development are reviewed. While advanced lesions involve disorganization of the intima and deformity of the artery, such changes are absent or minimal in their precursors. Advanced lesions are either overtly clinical or they predispose to the complications that cause ischemic episodes; precursors are silent and do not lead directly to complications. The precursors are arranged in a temporal sequence of three characteristic lesion types. Types I and II are generally the only lesion types found in children, although they may also occur in adults. Type I lesions represent the very initial changes and are I n this report we characterize lesions that precede and may initiate the development of advanced atherosclerotic lesions. Advanced lesions are defined as those in which an accumulation of lipid in the intima is associated with intimal disorganization and thickening, deformity of the arterial wall, and often with complications such as fissure, hematoma, and thrombosis. Advanced lesions may produce symptoms, but the lesions that precede them are clinically silent.This report is the second in a series of three. The first 1 provided a definition of the arterial intima and its atherosclerosis-prone regions. The third report will describe the different types of advanced atherosclerotic lesions and will provide a histological classification of all human atherosclerotic lesion types. The precursors of advanced lesions are divided into three morphologically characteristic types. Both type I and II lesions represent small lipid deposits in the arterial intima, and type II includes those lesions generally referred to as fatty streaks. Type III represents the stage that links type II to advanced lesions. The term "early lesions" is sometimes used for type I and II lesions. "Early" implies that these lesions are followed by "later" (advanced) lesions. It also implies that they are found early in life. Neither implication is necessarily "A Definition of Initial, Fatty Streak, and Intermediate Lesions of Atherosclerosis" was approved by the American Heart Association SAC/Steering Committee on October 20, 1992.Requests for reprints should be sent to the Office of Scientific Affairs, American Heart Association, 7272 Greenville Ave, Dallas, TX 75231-4596. true, although types I and II are generally the only lesions present in children, and there is evidence that certain type II lesions are prone to proceed to type III and more advanced lesions.The distinctions that separate individual lesion types are based on consistent morphological characteristics, which indicate that each type may stabilize temporarily or permanently and that progression to the next type may require an additional stimulus. The morphological features of each type of lesion and the time at which each tends to occur and predominate in the course of a human life are strong presumptive evid...
T his report is a concise review of current knowledge of the structure and function of the intima of the aorta and the major distributing arteries. The main purpose of the review is to delineate normal arterial intima from atherosclerotic lesions and, in particular, to distinguish physiological adaptations from atherosclerotic increases in intimal thickness. To characterize normal intima, including the adaptive intimal thickenings, some of which represent locations in which atherosclerotic lesions are prone to develop, the structure, composition, and functions of the arterial intima in young people as well as in laboratory animals not subjected to known atherogenic stimuli are reviewed.This report on arterial intima is the first in a series of four. The second report will review and define initial, fatty streak, and intermediate types of atherosclerotic lesions, and the third report will review all types of advanced (i.e., potentially clinical and clinical) lesions. The overall objective is to define arterial intima and all types of atherosclerotic lesions, and then to postulate, in a fourth and final report, a valid and up-to-date pathobiological nomenclature and classification of atherosclerotic lesions.
his report is a concise review of current knowledge of the structure and function of the intima of the aorta and the major distributing arteries. The main purpose of the review is to delineate normal arterial intima from atherosclerotic lesions and, in particular, to distinguish physiological adaptations from atherosclerotic increases in intimal thickness. To characterize normal intima, including the adaptive intimal thickenings, some of which represent locations in which atherosclerotic lesions are prone to develop, the structure, composition, and functions of the arterial intima in young people as well as in laboratory animals not subjected to known atherogenic stimuli are reviewed.This report on arterial intima is the first in a series of four. The second report will review and define initial, fatty streak, and intermediate types of atherosclerotic lesions, and the third report will review all types of advanced (i.e., potentially clinical and clinical) lesions. The overall objective is to define arterial intima and all types of atherosclerotic lesions, and then to postulate, in a fourth and final report, a valid and up-to-date pathobiologicaJ nomenclature and classification of atherosclerotic lesions.
The enumeration of absolute cell numbers and cell proliferation in clinical samples is important for diagnostic and research purposes. Detection of cellular DNA with fluorescent dyes is the most commonly used approach for cell enumeration in cytometry. Inductively coupled plasma mass spectrometry (ICPMS) has been recently introduced to the field of protein and cell surface antigen identification via ICPMS-linked immunoassays using element-labeled affinity reagents such as gold and lanthanide-conjugated antibodies. In the present work, we describe novel methods for using metallointercalators that irreversibly bind DNA and low concentrations of rare earth metals added to cell growth media for rapid and sensitive measurement of cell numbers by mass spectrometry. We show that Ir- and Rh-containing metallointercalators are useful reagents for labeling cells and normalizing signals when studying antigen expression on different types and numbers of cells. Results are presented for solution analysis performed by conventional ICPMS and compared to measurements obtained on the novel flow cytometer mass spectrometer (FC-MS) instrument, designed to analyze multiple antigens and DNA simultaneously in single cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.