Monocyte-derived myeloid cells play vital roles in inflammation-related autoimmune/inflammatory diseases and cancers. Here, we report that exosomes can deliver anti-inflammatory agents, such as curcumin, to activated myeloid cells in vivo. This technology provides a means for anti-inflammatory drugs, such as curcumin, to target the inflammatory cells as well as to overcome unwanted off-target effects that limit their utility. Using exosomes as a delivery vehicle, we provide evidence that curcumin delivered by exosomes is more stable and more highly concentrated in the blood. We show that the target specificity is determined by exosomes, and the improvement of curcumin activity is achieved by directing curcumin to inflammatory cells associated with therapeutic, but not toxic, effects. Furthermore, we validate the therapeutic relevance of this technique in a lipopolysaccharide (LPS)-induced septic shock mouse model. We further show that exosomes, but not lipid alone, are required for the enhanced anti-inflammatory activity of curcumin. The specificity of using exosomes as a drug carrier creates opportunities for treatments of many inflammation-related diseases without significant side effects due to innocent bystander or off-target effects.
International variations in cancer rates have been attributed, at least in part, to differences in dietary intake. Recently, it has been suggested that consumption of soyfoods may contribute to the relatively low rates of breast, colon, and prostate cancers in countries such as China and Japan. Soybeans contain a number of anticarcinogens, and a recent National Cancer Institute workshop recommended that the role of soyfoods in cancer prevention be investigated. In this review, the hypothesis that soy intake reduces cancer risk is considered by examining relevant in vitro, animal, and epidemiological data. Soybeans are a unique dietary source of the isoflavone genistein, which possesses weak estrogenic activity and has been shown to act in animal models as an antiestrogen. Genistein is also a specific inhibitor of protein tyrosine kinases; it also inhibits DNA topoisomerases and other critical enzymes involved in signal transduction. In vitro, genistein suppresses the growth of a wide range of cancer cells, with IC50 values ranging from 5 to 40 microM (1-10 micrograms/ml). Of the 26 animal studies of experimental carcinogenesis in which diets containing soy or soybean isoflavones were employed, 17 (65%) reported protective effects. No studies reported soy intake increased tumor development. The epidemiological data are also inconsistent, although consumption of nonfermented soy products, such as soymilk and tofu, tended to be either protective or not associated with cancer risk; however, no consistent pattern was evident with the fermented soy products, such as miso. Protective effects were observed for both hormone- and nonhormone-related cancers. While a definitive statement that soy reduces cancer risk cannot be made at this time, there is sufficient evidence of a protective effect to warrant continued investigation.
Many tumor cells shed specialized membrane vesicles known as exosomes. In this study, we show that pretreatment of mice with exosomes produced by TS/A or 4T.1 murine mammary tumor cells resulted in accelerated growth of implanted tumor cells in both syngeneic BALB/c mice and nude mice. As implanted TS/A tumor cells grew more rapidly in mice that had been depleted of NK cells, we analyzed the effects of the tumor-derived exosomes on NK cells. The tumor-derived exosomes inhibit NK cell cytotoxic activity ex vivo and in vitro as demonstrated by chromium release assays. The treatment of mice with TS/A tumor exosomes also led to a reduction in the percentages of NK cells, as determined by FACS analysis, in the lungs and spleens. Key features of NK cell activity were inhibited, including release of perforin but not granzyme B, as well as the expression of cyclin D3 and activation of the Jak3-mediated pathways. Human tumor cell lines also were found to produce exosomes that were capable of inhibiting IL-2-stimulated NK cell proliferation. Exosomes produced by dendritic cells or B cells did not. The presentation of tumor Ags by exosomes is under consideration as a cancer vaccine strategy; however, we found that pretreatment of mice with tumor exosomes blunted the protective effect of syngeneic dendritic cells pulsed ex vivo with tumor exosomes. We propose that tumor exosomes contribute to the growth of tumors by blocking IL-2-mediated activation of NK cells and their cytotoxic response to tumor cells.
False positive and false negative peaks detected from extracted ion chromatograms (EIC) are an urgent problem with existing software packages that preprocess untargeted liquid or gas chromatography-mass spectrometry metabolomics data because they can translate downstream into spurious or missing compound identifications. We have developed new algorithms that carry out the sequential construction of EICs and detection of EIC peaks. We compare the new algorithms to two popular software packages XCMS and MZmine 2 and present evidence that these new algorithms detect significantly fewer false positives. Regarding the detection of compounds known to be present in the data, the new algorithms perform at least as well as XCMS and MZmine 2. Furthermore, we present evidence that mass tolerance in m/z should be favored rather than mass tolerance in ppm in the process of constructing EICs. The mass tolerance parameter plays a critical role in the EIC construction process and can have immense impact on the detection of EIC peaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.