Objectives
To characterize the morphological features of plaque erosion and calcified nodule in patients with acute coronary syndrome (ACS) by optical coherence tomography (OCT).
Background
Plaque erosion and calcified nodule have not been systematically investigated in vivo.
Methods
One hundred and twenty-six patients with ACS who had undergone pre-intervention OCT imaging were included. The culprit lesions were classified as plaque rupture (PR), erosion (OCT-erosion), calcified nodule (OCT-CN), or others using a new set of diagnostic criteria for OCT.
Results
The incidences of PR, OCT-erosion, and OCT-CN were 43.7%, 31.0%, and 7.9%, respectively. Patients with OCT-erosion were the youngest compared with those with PR and OCT-CN (53.8±13.1 years vs. 60.6±11.5 years, 65.1±5.0 years, p=0.005). Compared with patients with PR, presentation with non-ST-segment elevation ACS (NSTE-ACS) was more common in patients with OCT-erosion (61.5% vs. 29.1%, p=0.008) and OCT-CN (100% vs. 29.1%, p<0.001). OCT-erosion had a lower frequency of lipid plaque (43.6% vs. 100%, p<0.001), thicker fibrous cap (169.3±99.1 μm vs. 60.4±16.6 μm, p<0.001), and smaller lipid arc (202.8±73.6° vs. 275.8±60.4°, p<0.001) than PR. The diameter stenosis was least severe in OCT-erosion followed by OCT-CN and PR (55.4±14.7% vs. 66.1±13.5% vs. 68.8±12.9%, p<0.001).
Conclusions
OCT is a promising modality for identifying OCT-erosion and OCT-CN in vivo. OCT-erosion is a frequent finding in patients with ACS, especially in those with NSTE-ACS and younger patients. OCT-CN is the least common etiology for ACS and is more common in older patients.
In principle, a complex assembly of strongly interacting electrons can self-organize into a wide variety of collective states, but relatively few such states have been identified in practice. We report that, in the close vicinity of a metamagnetic quantum critical point, high-purity strontium ruthenate Sr3Ru2O7 possesses a large magnetoresistive anisotropy, consistent with the existence of an electronic nematic fluid. We discuss a striking phenomenological similarity between our observations and those made in high-purity two-dimensional electron fluids in gallium arsenide devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.